CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
unknown
Bio-optical footprints created by mesoscale eddies in the Sargasso Sea
Authors
Boss
Calil
+25 more
Chelton
Chelton
Chelton
d'Ovidio
D. A. Siegel
D. J. McGillicuddy
Falkowski
Klein
Lévy
Maritorena
Martin
McGillicuddy
McGillicuddy
McGillicuddy
N. B. Nelson
Nelson
P. Peterson
Pascual
Robinson
S. Maritorena
Schofield
Siegel
Siegel
Siegel
Sweeney
Publication date
14 July 2011
Publisher
'American Geophysical Union (AGU)'
Doi
Cite
Abstract
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L13608, doi:10.1029/2011GL047660.We investigate the bio-optical footprints made by mesoscale eddies in the Sargasso Sea and the processes that create them through an eddy-centric approach. Many (>10,000) eddies are identified and followed in time using satellite altimetry observations and the spatial ocean color patterns surrounding each eddy are assessed. We find through a sequence of statistical hypothesis tests that not one but several mechanisms (i.e., eddy pumping, eddy advection and eddy-Ekman pumping) are responsible for the spatial-temporal ocean color patterns following individual eddies. Both eddy pumping and the eddy-Ekman pumping mechanisms alter subsurface nutrient distributions thereby driving biogeochemical cycles, while the eddy advection mechanism to first order stirs existing horizontal gradients in bio-optical properties. This work illustrates both the promise and some of the limitations of satellite observations for assessing the biogeochemical impacts of mesoscale eddies.We would like to acknowledge the support of the National Science Foundation and NASA
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1029%2F2011gl04766...
Last time updated on 01/04/2019
Woods Hole Open Access Server
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:darchive.mblwhoilibrary.or...
Last time updated on 08/06/2012