227 research outputs found

    Elongation, rooting and acclimatization of micropropagated shoots from mature material of hybrid larch

    Get PDF
    Factors were defined for elongation, rooting and acclimatization of micropropagated shoots of Larix x eurolepis Henry initiated from short shoot buds of plagiotropic stecklings serially propagated for 9 years from an 8-year-old tree. Initiation and multiplication were on Schenk and Hildebrandt (SH) medium supplemented with 5 μM 6-benzyladenine (BA) and 1 μM indole-butyric acid (IBA). Stem elongation was obtained in 36% of the shoots on SH medium containing 0.5 μM BA and 63% of the remaining non-elongated shoots initiated stem elongation after transfer on SH medium devoid of growth regulators. Rooting involved 2 steps: root induction on Campbell and Durzan mineral salts and Murashige and Skoog organic elements, both half-strength (CD-MS/2), supplemented with 1 μM of both naphthaleneacetic acid (NAA) and IBA, and root elongation following transfer to CD-MS/2 medium devoid of growth regulators. Repeating this 2-step sequence yielded up to 67% rooted shoots. Acclimatization of plantlets ranged from 83% to 100%. Over 300 plants were transferred to the greenhouse; some showed plagiotropic growth

    Increased Resistance of Bt Aspens to Phratora vitellinae (Coleoptera) Leads to Increased Plant Growth under Experimental Conditions

    Get PDF
    One main aim with genetic modification (GM) of trees is to produce plants that are resistant to various types of pests. The effectiveness of GM-introduced toxins against specific pest species on trees has been shown in the laboratory. However, few attempts have been made to determine if the production of these toxins and reduced herbivory will translate into increased tree productivity. We established an experiment with two lines of potted aspens (Populus tremula×Populus tremuloides) which express Bt (Bacillus thuringiensis) toxins and the isogenic wildtype (Wt) in the lab. The goal was to explore how experimentally controlled levels of a targeted leaf beetle Phratora vitellinae (Coleoptera; Chrysomelidae) influenced leaf damage severity, leaf beetle performance and the growth of aspen. Four patterns emerged. Firstly, we found clear evidence that Bt toxins reduce leaf damage. The damage on the Bt lines was significantly lower than for the Wt line in high and low herbivory treatment, respectively. Secondly, Bt toxins had a significant negative effect on leaf beetle survival. Thirdly, the significant decrease in height of the Wt line with increasing herbivory and the relative increase in height of one of the Bt lines compared with the Wt line in the presence of herbivores suggest that this also might translate into increased biomass production of Bt trees. This realized benefit was context-dependent and is likely to be manifested only if herbivore pressure is sufficiently high. However, these herbivore induced patterns did not translate into significant affect on biomass, instead one Bt line overall produced less biomass than the Wt. Fourthly, compiled results suggest that the growth reduction in one Bt line as indicated here is likely due to events in the transformation process and that a hypothesized cost of producing Bt toxins is of subordinate significance

    Genetic factors associated with population size may increase extinction risks and decrease colonization potential in a keystone tropical pine

    Get PDF
    Pioneer species are essential for forest regeneration and ecosystem resilience. Pinus chiapensis is an endangered pioneer key species for tropical montane cloud forest regeneration in Mesoamerica. Human activities have severely reduced some P. chiapensis populations, which exhibited a small or null colonization potential suggesting the involvement of genetic factors associated with small populations. We explored the relationships between (i) population genetic diversity (allozymes) and population size, including sampling size effects, (ii) fitness estimates associated with colonization potential (seed viability and seedling performance) in a common environment and population size, and (iii) fitness estimates and observed heterozygosity in populations with sizes spanning five orders of magnitude. All the estimates of genetic diversity and fitness increased significantly with population size. Low fitness was detected in progenies of small populations of disturbed and undisturbed habitats. Progenies with the lowest observed heterozygosity displayed the lowest fitness estimates, which, in turn, increased with heterozygosity, but seed viability peaked at intermediate heterozygosity values suggesting inbreeding and outbreeding depression. Inbreeding depression appears to be the most immediate genetic factor in population decline. Conservation efforts should try to maintain large and genetically diverse populations, enhance gene flow by restoring connectivity between adjacent populations, and avoid genetically distant individuals

    Genetic variation in natural populations of Populus tremuloides

    No full text

    Genic diversity of natural populations of a clone forming tree Populus tremuloides

    No full text
    corecore