523 research outputs found

    Providing Help for the Company in Trouble

    Get PDF

    Linear and star architecture methacrylate-functionalised PDMS

    Get PDF
    Methacrylate-terminated poly(dimethylsiloxane)s in both linear and star architectures have been produced through a time-efficient 1 pot, 2 stage reaction which involved hydrosilylation of small molecule silanes with allyl methacrylate and subsequent equilibration of the product with octamethylcyclotetrasiloxane (D4) in the presence of an acid catalyst. This synthetic route required only one work-up procedure and the products were comparable to those produced by 2 step processes typically reported in literature. All methacrylate-terminated products were approximately double the molar masses anticipated based on reagent loadings. This is thought to be due to redistribution of siloxane bonds in the presence of the platinum hydrosilylation catalyst accompanied by a loss of silicon from the reaction by evaporation of dimethylsilane. It is believed that this is the first report of such siloxane equilibration occurring at room temperature

    The Effects of Kinesio Tape on Postural Control in Female Athletes With Chronic Ankle Instability

    Get PDF
    Please refer to the pdf version of the abstract located adjacent to the title

    Why are tropical conifers disadvantaged in fertile soils? Comparison of Podocarpus guatemalensis with an angiosperm pioneer, Ficus insipida

    Get PDF
    Conifers are, for the most part, competitively excluded from tropical rainforests by angiosperms. Where they do occur, conifers often occupy sites that are relatively infertile. To gain insight into the physiological mechanisms by which angiosperms outcompete conifers in more productive sites, we grew seedlings of a tropical conifer (Podocarpus guatemalensis Standley) and an angiosperm pioneer (Ficus insipida Willd.) with and without added nutrients, supplied in the form of a slow-release fertilizer. At the conclusion of the experiment, the dry mass of P. guatemalensis seedlings in fertilized soil was approximately twofold larger than that of seedlings in unfertilized soil; on the other hand, the dry mass of F. insipida seedlings in fertilized soil was similar to 20-fold larger than seedlings in unfertilized soil. The higher relative growth rate of F. insipida was associated with a larger leaf area ratio and a higher photosynthetic rate per unit leaf area. Higher overall photosynthetic rates in F. insipida were associated with an approximately fivefold larger stomatal conductance than in P. guatemalensis. We surmise that a higher whole-plant hydraulic conductance in the vessel bearing angiosperm F. insipida enabled higher leaf area ratio and higher stomatal conductance per unit leaf area than in the tracheid bearing P. guatemalensis, which enabled F. insipida to capitalize on increased photosynthetic capacity driven by higher nitrogen availability in fertilized soil

    Probing a Complex of Cytochromecand Cardiolipin by Magnetic Circular Dichroism Spectroscopy: Implications for the Initial Events in Apoptosis

    Get PDF
    Oxidation of cardiolipin (CL) by its complex with cytochrome c (cyt c) plays a crucial role in triggering apoptosis. Through a combination of magnetic circular dichroism spectroscopy and potentiometric titrations, we show that both the ferric and ferrous forms of the heme group of a CL:cyt c complex exist as multiple conformers at a physiologically relevant pH of 7.4. For the ferric state, these conformers are His/Lys- and His/OH–-ligated. The ferrous state is predominantly high-spin and, most likely, His/–. Interconversion of the ferric and ferrous conformers is described by a single midpoint potential of -80 ± 9 mV vs SHE. These results suggest that CL oxidation in mitochondria could occur by the reaction of molecular oxygen with the ferrous CL:cyt c complex in addition to the well-described reaction of peroxides with the ferric form

    Are quasars accreting at super-Eddington rates?

    Get PDF
    In a previous paper, Collin & Hur\'e (2001), using a sample of Active Galactic Nuclei (AGN) where the mass has been determined by reverberation studies (Kaspi et al. 2000), have shown that if the optical luminosity is emitted by a steady accretion disc, about half of the objects are accreting close to or higher than the Eddington rate. We conclude here that this result is unavoidable, unless the masses are strongly underestimated by reverberation studies, which does not seem to be the case. There are three issues to the problem: 1. Accretion proceeds at Eddington or super-Eddington rates through thick discs. Several consequences follow: an anti-correlation between the line widths of the lines and the Eddington ratios, and a decrease of the Eddington ratio with an increasing black hole mass. Extrapolated to all quasars, these results imply that the amount of mass locked in massive black holes should be larger than presently thought. 2. The optical luminosity is not produced directly by the gravitational release of energy, and super-Eddington rates are not required. The optical luminosity has to be emitted by a dense and thick medium located at large distances from the center (103^3 to 10410^4 gravitational radii). It can be due to reprocessing of the X-ray photons from the central source in a geometrically thin warped disc, or in dense "blobs" forming a geometrically thick system, which can be a part of the accretion flow or the basis of an outflow. 3. Accretion discs are completely "non standard". Presently neither the predictions of models nor the observed spectral distributions are sufficient to help choosing between these solutions.Comment: 16 pages, 11 figures, accepted in A&

    Zingerone in the Flower of Passiflora maliformis Attracts an Australian Fruit Fly, Bactrocera jarvisi (Tryon)

    Get PDF
    Passiflora maliformis is an introduced plant in Australia but its flowers are known to attract the native Jarvis’s fruit fly, Bactrocera jarvisi (Tryon). The present study identifies and quantifies likely attractant(s) of male B. jarvisi in P. maliformis flowers. The chemical compositions of the inner and outer coronal filaments, anther, stigma, ovary, sepal, and petal of P. maliformis were separately extracted with ethanol and analyzed using gas chromatography-mass spectrometry (GC-MS). Polyisoprenoid lipid precursors, fatty acids and their derivatives, and phenylpropanoids were detected in P. maliformis flowers. Phenylpropanoids included raspberry ketone, cuelure, zingerone, and zingerol, although compositions varied markedly amongst the flower parts. P. maliformis flowers were open for less than one day, and the amounts of some of the compounds decreased throughout the day. The attraction of male B. jarvisi to P. maliformis flowers is most readily explained by the presence of zingerone in these flowers

    Denitrification bioreactor trial in the Russell River catchment of the Wet Tropics: final report

    Get PDF
    Dissolved inorganic nitrogen (DIN) in runoff from agricultural land is considered to have a significant detrimental impact on the Great Barrier Reef (GBR). Losses of DIN to runoff can be reduced by good agricultural practices, but they cannot be eliminated entirely in the Wet Tropics due to the need for adequate nitrogen supply to crops, the high solubility of DIN, particularly nitrate, and high rainfall. Thus, it is inevitable that DIN concentrations are higher in runoff from agricultural land than from forested areas. Some of this DIN is removed from the water as it moves through aquifers, creeks, rivers, and wetlands on its way to the sea, through the process of microbial denitrification. Denitrification involves the conversion of nitrate and nitrite (NOx-N) to dinitrogen (N2) gas, which is lost to the atmosphere. Denitrification requires NOx-N, organic matter, and low oxygen concentration. Wetlands provide these conditions, so DIN concentrations decline in water moving through them. Similarly, denitrifying bioreactors are designed to treat water by passing it through a porous organic material, typically woodchips. The woodchips provide organic matter for the microorganisms, which in turn lower the oxygen concentration, providing ideal conditions for denitrification. Denitrifying bioreactors are now widely used to remove the NOx-N component of DIN from agricultural runoff water elsewhere, but they have not yet been evaluated in the Wet Tropics. The Wet Tropics pose a challenge for efficacy due to the large volumes of water moving through the landscape. The objective of this project was “to establish the effectiveness of denitrifying bioreactors as a remediation technology for excess DIN in agricultural runoff within the Babinda Swamp Drainage Area (BSDA) of the Russell catchment”. The Russell River exports a disproportionate amount of DIN to the GBR lagoon because of the high rainfall and high proportion of agriculture, mostly sugarcane, in its catchment

    Assessing the Australian termite diversity anomaly: how habitat and rainfall affect termite assemblages

    Get PDF
    Termites are important ecosystem engineers in tropical habitats, with different feeding groups able to decompose wood, grass, litter, and soil organic matter. In most tropical regions, termite abundance and species diversity are assumed to increase with rainfall, with highest levels found in rainforests. However, in the Australian tropics, this pattern is thought to be reversed, with lower species richness and termite abundance found in rainforest than drier habitats. The potential mechanisms underlying this pattern remain unclear. We compared termite assemblages (abundance, activity, diversity, and feeding group composition) across five sites along a precipitation gradient (ranging from ∼800 to 4,000 mm annual rainfall), spanning dry and wet savanna habitats, wet sclerophyll, and lowland and upland rainforests in tropical North Queensland. Moving from dry to wet habitats, we observed dramatic decreases in termite abundance in both mounds and dead wood occupancy, with greater abundance and activity at savanna sites (low precipitation) compared with rainforest or sclerophyll sites (high precipitation). We also observed a turnover in termite species and feeding group diversity across sites that were close together, but in different habitats. Termite species and feeding group richness were highest in savanna sites, with 13 termite species from wood-, litter-, grass-, dung-, and soil-feeding groups, while only five termite species were encountered in rainforest and wet sclerophyll sites—all wood feeders. These results suggest that the Australian termite diversity anomaly may be partly driven by how specific feeding groups colonized habitats across Australia. Consequently, termites in Australian rainforests may be less important in ecosystem processes, such as carbon and nutrient cycling during decomposition, compared with termites in other tropical rainforests

    Examining ozone susceptibility in the genus Musa (bananas)

    Get PDF
    Tropospheric ozone (O3) is a global air pollutant that adversely affects plant growth. Whereas the impacts of O3 have previously been examined for some tropical commodity crops, no information is available for the pantropical crop, banana (Musa spp.). To address this, we exposed Australia’s major banana cultivar, Williams, to a range of [O3] in open top chambers. In addition, we examined 46 diverse Musa lines growing in a common garden for variation in three traits that are hypothesised to shape responses to O3: (1) leaf mass per area; (2) intrinsic water use efficiency; and (3) total antioxidant capacity. We show that O3 exposure had a significant effect on the biomass of cv. Williams, with significant reductions in both pseudostem and sucker biomass with increasing [O3]. This was accompanied by a significant increase in total antioxidant capacity and phenolic concentrations in older, but not younger, leaves, indicating the importance of cumulative O3 exposure. Using the observed trait diversity, we projected O3 tolerance among the 46 Musa lines growing in the common garden. Of these, cv. Williams ranked as one of the most O3-tolerant cultivars. This suggests that other genetic lines could be even more susceptible, with implications for banana production and food security throughout the tropics
    corecore