2,646 research outputs found

    Exploring the Internet of "Educational Things"(IoET) in rural underprivileged areas

    Get PDF

    Renal Physiological Engineering – Optimization Aspects

    Get PDF

    Di-n-but­yl{1-[1-(2-hydroxy­phen­yl)ethyl­idene]-5-[1-(2-oxidophen­yl)ethyl­idene]thio­carbazonato-Îș3 O 5,N 5,S}tin(IV)

    Get PDF
    The ‘symmetrical’ 1,5-bis­[1-(2-hydroxy­phen­yl)ethyl­idene]thio­carbazone Schiff base condenses with dibutyl­tin oxide to form the title complex, [Sn(C4H9)2(C17H16N4O2S)], in which the deprotonated ligand O,N,S-chelates to the Sn atom of two crystallographically independent mol­ecules. The ligand bears a formal negative charge on the S and one O atom; the other O atom retains its H atom. The Sn atoms are five-coordinated in a cis-C2NOSSn trigonal-bipyramidal environment, and the apical sites are occupied by the O and S atoms. In both mol­ecules, the hydr­oxy group is hydrogen bonded to a double-bonded N atom, generating a six-membered ring. The amino group is a donor to the coordinated O atom of an adjacent mol­ecule, the hydrogen-bonding inter­action giving rise to a helical chain running along the b axis. In one of the independent mol­ecules, the atoms of one of the n-butyl groups are disordered over two sets of sites with equal occupancy. In the other independent mol­ecule, the atoms of both n-butyl groups are disordered over two sets of sites with equal occupancy and, in addition, the Sn and S atoms were also refined as disordered over two sets of sites with equal occupancy

    Biogeochemical Impact of Long-Range Transported Dust over Northern South China Sea

    Get PDF
    Transpacific transport and impact of Asian dust aerosols have been well documented (e.g., results from ACE-Asia and regional follow-on campaigns), but little is known about dust invasion to the South China Sea (SCS). On 19-21 March 2010, a fierce Asian dust storm affected large areas from the Gobi deserts to the West Pacific, including Taiwan and Hong Kong. As a pilot study of the 7-SEAS (Seven South East Asian Studies) in the northern SCS, detailed characteristics of long-range transported dust aerosols were first observed by a comprehensive set of ground-based instruments deployed at the Dongsha islands (20deg42'52" N, 116deg43'51" E). Aerosol measurements such as particle mass concentrations, size distribution, optical properties, hygroscopicity, and vertical profiles help illustrate the evolution of this dust outbreak. Our results indicate that these dust particles were mixed with anthropogenic and marine aerosols, and transported near the surface. Satellite assessment of biogeochemical impact of dust deposition into open oceans is hindered by our current inability in retrieving areal dust properties and ocean colors over an extensive period of time, particularly under the influence of cloudy conditions. In this paper, we analyze the changes of retrieved Chlorophyll-a (Chl-a) concentration over the northern SCS, considered as oligotophic waters in the spring, from long-term SeaWiFS measurements since 1997. Over the past decade, six long-range transported dust events are identified based on spatiotemporal evolutions of PM10 measurements from regional monitoring stations, with the aid of trajectory analysis. Multi-year composites of Chl-a imagery for dust event and non-dust background during March-April are applied to overcome insufficient retrievals of Chl-a due to cloudy environment. Due to anthropogenic modification within a shallow boundary layer off the densely populated and industrial southeast coast of China, the iron ion activation of deliquescent dust particles enhances the efficiency of fertilization for biological productivity. Compared to the West Pacific, the marine ecosystem in the northern SCS is much more susceptible to the biogeochemical impact of long-range transported Asian dust

    Compressibility and permeability of solidified dredged marine soils (DMS) with the addition of cement andor waste granular materials (WGM)

    Get PDF
    Dredged marine soils that obtained from dredging work were characterize as geo-waste, which is prone to be dumped rather than to be reused. This type of soil is high in compressibility and low in load bearing capacity. The engineering properties of this soft soil can be improve via soil solidification method. Cement is the common hydraulic binder used in soil solidification, were found to generate the emission of greenhouse gasses (GHG), particularly carbon dioxide (CO2) which also had affected the earth’s atmosphere. Therefore, there has been an increasing interest in using alternate pozzolanic materials such as waste granular materials (WGM) to fully or partially substituted the use of cement in soil solidification. WGM such as coal bottom ash (BA) and palm oil clinker (POC) were opted due to its pozzolanic properties. Prior to the planning of reclamation work using DMS admixed with conventional and/or alternate pozzolanic materials, the consolidation characteristics of the admixed materials must be acknowledged. Hence, the present study will examine the amount of settlement and coefficient of permeability (k) of DMS treated with cement and/or WGM in laboratory-scale experiments. Samples were prepared in various proportion in order to examine the individual effect of the cement and/or alternate pozzolanic materials on compressibility and permeability. For cement-admixed DMS, sample with 20 % of cement have significantly reduced the settlement than untreated and 10 % cemented DMS. For WGM-admixed DMS, the initial void ratio is low as compared to the untreated DMS due to the rearrangement of soil particles, which is densely packed. For cement-WGM-admixed DMS, samples of 15C50BA and 15C50POC displayed significant settlement reduction than 10C100BA, 10C100POC and untreated samples

    Recent Progress on Deep Blue Aerosol Algorithm as Applied TO MODIS, SEA WIFS, and VIIRS, and Their Intercomparisons with Ground Based and Other Satellite Measurements

    Get PDF
    The impact of natural and anthropogenic sources of aerosols has gained increasing attention from scientific communities in recent years. Indeed, tropospheric aerosols not only perturb radiative energy balance by interacting with solar and terrestrial radiation, but also by changing cloud properties and lifetime. Furthermore, these anthropogenic and natural air particles, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across oceans and continents resulting in important biogeochemical impacts on the ecosystem. With the launch of SeaWiFS in 1997, Terra/MODIS in 1999, and Aqua/MODIS in 2002, high quality comprehensive aerosol climatology is becoming feasible for the first time. As a result of these unprecedented data records, studies of the radiative and biogeochemical effects due to tropospheric aerosols are now possible. In this talk, we will demonstrate how this newly available SeaWiFS/MODIS aerosol climatology can provide an important piece of puzzles in reducing the uncertainty of estimated climatic forcing due to aerosols. We will start with the global distribution of aerosol loading and their variabilities over both land and ocean on short- and long-term temporal scales observed over the last decade. The recent progress made in Deep Blue aerosol algorithm on improving accuracy of these Sea WiFS / MODIS aerosol products in particular over land will be discussed. The impacts on quantifying physical and optical processes of aerosols over source regions of adding the Deep Blue products of aerosol properties over bright-reflecting surfaces into Sea WiFS / MODIS as well as VIIRS data suite will also be addressed. We will also show the intercomparison results of SeaWiFS/MODIS retrieved aerosol optical thickness with data from ground based AERONET sunphotometers over land and ocean as well as with other satellite measurements. The trends observed in global aerosol loadings of both natural and anthropogenic sources based upon more than a decade of combined MODIS/SeaWiFS data (1997-2011) will be discussed. We will also address the importance of various key issues such as differences in spatial-temporal sampling rates and observation time between different satellite measurements could potentially impact these intercomparisons results, especially for using the monthly mean data, and thus on estimates of long-term aerosol trends
    • 

    corecore