141 research outputs found

    Pseudo-solidification of dredged marine soils with cement - fly ash for reuse in coastal development

    Get PDF
    The dislodged and removed sediments from the seabed, termed dredged marine soils, are generally classified as a waste material requiring special disposal procedures. This is due to the potential contamination risks of transporting and disposing the dredged soils, and the fact that the material is of poor engineering quality, unsuitable for usage as a conventional good soil in construction. Also, taking into account the incurred costs and risk exposure in transferring the material to the dump site, whether on land or offshore, it is intuitive to examine the possibilities of reusing the dredged soils, especially in coastal development where the transportation route would be of shorter distance between the dredged site and the construction location. Pseudo-solidification of soils is not a novel idea though, where hydraulic binders are injected and mixed with soils to improve the inherent engineering properties for better load bearing capacity. It is commonly used on land in areas with vast and deep deposits of soft, weak soils. However, to implement the technique on the displaced then replaced dredged soil would require careful study, as the material is far more poorly than their land counterparts, and that the deployment of equipment and workforce in a coastal environment is understandably more challenging. The paper illustrates the laboratory investigation of the improved engineering performance of dredged marine soil sample with cement and fly ash blend. Some key findings include optimum dosage of cement and fly ash mix to produce up to 30 times of small strain stiffness improvement, pre-yield settlement reduction of the treated soil unaffected by prolonged curing period, and damage of the cementitious bonds formed by the rather small dosage of admixtures in the soil post-yield. In short, the test results show a promising reuse potential of the otherwise discarded dredged marine soils

    Application of choosing by advantages to determine the optimal site for solar power plants

    Get PDF
    Solar energy is a critical component of the energy development strategy. The site selection for solar power plants has a signifcant impact on the cost of energy production. A favorable situation would result in signifcant cost savings and increased electricity generation efciency. California is located in the southwest region of the United States of America and is blessed with an abundance of sunlight. In recent years, the state’s economy and population have expanded quickly, resulting in an increased need for power. This study examines the south of California as a possibly well-suited site for the constructing large solar power plants to meet the local electricity needs. To begin, this article imposed some limits on the selection of three potential sites for constructing solar power plants (S1, S2, and S3). Then, a systematic approach for solar power plant site selection was presented, focusing on fve major factors (economic, technological, social, geographical, and environmental). This is the frst time that the choosing by advantages (CBA) method has been used to determine the optimal sites for solar power plant construction, with the possible sites ranked as S2>S1 >S3. The results were then compared with traditional methods such as the multi-criteria decision-making method. The fndings of this study suggest that the CBA method not only streamlines the solar power plant site selection process but also closely aligns with the objectives and desires of the investors

    A hybrid SDS and WPT-IBBO-DNM based model for ultra-short term photovoltaic prediction

    Get PDF
    Accurate photovoltaic (PV) power prediction has been a subject of ongoing study in order to address grid stability concerns caused by PV output unpredictability and intermittency. This paper proposes an ultra-short-term hybrid photovoltaic power forecasting method based on a dendritic neural model (DNM) in this paper. This model is trained using improved biogeography-based optimization (IBBO), a technique that incor�porates a domestication operation to increase the performance of classical biogeography-based optimization (BBO). To be more precise, a similar day selection (SDS) technique is presented for selecting the training set, and wavelet packet transform (WPT) is used to divide the input data into many components. IBBO is then used to train DNM weights and thresholds for each component prediction. Finally, each component’s prediction results are stacked and reassembled. The suggested hybrid model is used to forecast PV power under various weather conditions using data from the Desert Knowledge Australia Solar Centre (DKASC) in Alice Springs. The simulation results indicate that the proposed hybrid SDS and WPT-IBBO-DNM model has the lowest error of any of the benchmark models and hence has the potential to considerably enhance the accuracy of solar power forecasting (PVPF)

    Predictive direct power control for dual-active-bridge multilevel inverter based on conservative power theory

    Get PDF
    This paper explores the feasibility of multilevel dual-active bridge-inverter (DABMI) applications for grid-connected applications of a modern Model of Predictive Direct Power Control (MPDPC) based on the conservative power theory (CPT). In the case of unbalanced grid voltages, the objective of the study is to promote continued active and reactive energy in MPDPC without reducing effciency such as transient response and current harmonics. The nature of the instantaneous p-q theory permits only one out of three control targets to be fulfilled. The proposed control approached directly regulates the instantaneous active and reactive power to achieve three particular control objectives namely sinusoidal and symmetrical grid current, cancelling twice of fundamental grid frequency reactive power ripples, and removing twice grid frequency active power ripple. The techniques of complicated Grid part sequence extraction are unnecessary and improved at no extra expense, as is the case with current MPDPC fault-tolerant approaches. The instantaneous power at the next sampling instant is predicted with the newly developed discrete-time model. Each possible switching state will then be evaluated in the cost function defined until the optimal state which lead to the minimum power errors is determined. In MATLAB/Simulink simulation, the proposed CPT-based MPDPC measures reliability and performance at balanced and unbalanced grid voltages then compared with the conventional and existing MPDPC The proposed method manages to achieve all of three control targets which generates sinusoidal grid currents and attenuates active and reactive power ripple of twice the grid frequency exactly at the same time without losing its critical effciency including transient reaction and current harmonics

    Polygenic risk scores for prediction of breast cancer risk in Asian populations.

    Get PDF
    PURPOSE: Non-European populations are under-represented in genetics studies, hindering clinical implementation of breast cancer polygenic risk scores (PRSs). We aimed to develop PRSs using the largest available studies of Asian ancestry and to assess the transferability of PRS across ethnic subgroups. METHODS: The development data set comprised 138,309 women from 17 case-control studies. PRSs were generated using a clumping and thresholding method, lasso penalized regression, an Empirical Bayes approach, a Bayesian polygenic prediction approach, or linear combinations of multiple PRSs. These PRSs were evaluated in 89,898 women from 3 prospective studies (1592 incident cases). RESULTS: The best performing PRS (genome-wide set of single-nucleotide variations [formerly single-nucleotide polymorphism]) had a hazard ratio per unit SD of 1.62 (95% CI = 1.46-1.80) and an area under the receiver operating curve of 0.635 (95% CI = 0.622-0.649). Combined Asian and European PRSs (333 single-nucleotide variations) had a hazard ratio per SD of 1.53 (95% CI = 1.37-1.71) and an area under the receiver operating curve of 0.621 (95% CI = 0.608-0.635). The distribution of the latter PRS was different across ethnic subgroups, confirming the importance of population-specific calibration for valid estimation of breast cancer risk. CONCLUSION: PRSs developed in this study, from association data from multiple ancestries, can enhance risk stratification for women of Asian ancestry

    Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution

    Get PDF
    Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. Video Abstract [Figure presented] Development of the bioinformatics tool LOHHLA allows precise measurement of allele-specific HLA copy number, improves the accuracy in neoantigen prediction, and uncovers insights into how immune escape contributes to tumor evolution in non-small-cell lung cancer

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology.

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Procalcitonin Is Not a Reliable Biomarker of Bacterial Coinfection in People With Coronavirus Disease 2019 Undergoing Microbiological Investigation at the Time of Hospital Admission

    Get PDF
    Abstract Admission procalcitonin measurements and microbiology results were available for 1040 hospitalized adults with coronavirus disease 2019 (from 48 902 included in the International Severe Acute Respiratory and Emerging Infections Consortium World Health Organization Clinical Characterisation Protocol UK study). Although procalcitonin was higher in bacterial coinfection, this was neither clinically significant (median [IQR], 0.33 [0.11–1.70] ng/mL vs 0.24 [0.10–0.90] ng/mL) nor diagnostically useful (area under the receiver operating characteristic curve, 0.56 [95% confidence interval, .51–.60]).</jats:p
    corecore