2,557 research outputs found
Self-Dual Conformal Supergravity and the Hamiltonian Formulation
In terms of Dirac matrices the self-dual and anti-self-dual decomposition of
a conformal supergravity is given and a self-dual conformal supergravity theory
is developed as a connection dynamic theory in which the basic dynamic variabes
include the self-dual spin connection i.e. the Ashtekar connection rather than
the triad. The Hamiltonian formulation and the constraints are obtained by
using the Dirac-Bergmann algorithm.
PACS numbers: 04.20.Cv, 04.20.Fy,04.65.+
Hamiltonian and Linear-Space Structure for Damped Oscillators: I. General Theory
The phase space of damped linear oscillators is endowed with a bilinear
map under which the evolution operator is symmetric. This analog of
self-adjointness allows properties familiar from conservative systems to be
recovered, e.g., eigenvectors are "orthogonal" under the bilinear map and obey
sum rules, initial-value problems are readily solved and perturbation theory
applies to the_complex_ eigenvalues. These concepts are conveniently
represented in a biorthogonal basis.Comment: REVTeX4, 10pp., 1 PS figure. N.B.: `Alec' is my first name, `Maassen
van den Brink' my family name. v2: extensive streamlinin
Eigenvector Expansion and Petermann Factor for Ohmically Damped Oscillators
Correlation functions in ohmically damped
systems such as coupled harmonic oscillators or optical resonators can be
expressed as a single sum over modes (which are not power-orthogonal), with
each term multiplied by the Petermann factor (PF) , leading to "excess
noise" when . It is shown that is common rather than
exceptional, that can be large even for weak damping, and that the PF
appears in other processes as well: for example, a time-independent
perturbation \sim\ep leads to a frequency shift \sim \ep C_j. The
coalescence of () eigenvectors gives rise to a critical point, which
exhibits "giant excess noise" (). At critical points, the
divergent parts of contributions to cancel, while time-independent
perturbations lead to non-analytic shifts \sim \ep^{1/J}.Comment: REVTeX4, 14 pages, 4 figures. v2: final, 20 single-col. pages, 2
figures. Streamlined with emphasis on physics over formalism; rewrote Section
V E so that it refers to time-dependent (instead of non-equilibrium) effect
Growth Dynamics and Processes Governing the Stability of Electrodeposited Size-Controlled Cubic Cu Catalysts
The renewable energy-powered conversion of industrially generated CO2 into useful chemicals and fuels is considered a promising technology for the sustainable development of our modern society. The electrochemical reduction of CO2 (CO2RR) is one of the possible conversion processes that can be employed to close the artificial carbon cycle, mimicking nature’s photosynthesis. Nevertheless, to enable green catalytic processes, selectivity for the desired products must be achieved. In the case of CO2RR, the selectivity is strongly dependent on the electrocatalyst structure. Here, we explore the phase space of synthesis parameters required for the electrodeposition of Cu cubes with {100} facets on glassy carbon substrates and elucidate their influence on the size, shape, coverage, and uniformity of the cubes. We found that the concentration of Cl– ions in solution controls the cube size, shape, and coverage, whereas the ratio of the reduction versus oxidation time and number of cycles in the alternating potential electrodeposition protocol can be used to further tune the cube size. Cyclic voltammetry experiments were complemented with in situ electrochemical scanning electron microscopy to follow the growth dynamics and ex situ transmission electron microscopy and electron diffraction. Our results indicate that the cube growth starts from nuclei formed during the first cycle, followed by a layered deposition and partial dissolution of new material in subsequent cycles
Iodide-mediated Cu catalyst restructuring during CO<sub>2</sub> electroreduction
Catalyst restructuring during electrochemical reactions is a critical but poorly understood process that determines the underlying structure–property relationships during catalysis. In the electrocatalytic reduction of CO2 (CO2RR), it is known that Cu, the most favorable catalyst for hydrocarbon generation, is highly susceptible to restructuring in the presence of halides. Iodide ions, in particular, greatly improved the catalyst performance of Cu foils, although a detailed understanding of the morphological evolution induced by iodide remains lacking. It is also unclear if a similar enhancement transfers to catalyst particles. Here, we first demonstrate that iodide pre-treatment improves the selectivity of hexagonally ordered Cu-island arrays towards ethylene and oxygenate products. Then, the morphological changes in these arrays caused by iodide treatment and during CO2RR are visualized using electrochemical transmission electron microscopy. Our observations reveal that the Cu islands evolve into tetrahedral CuI, which then become 3-dimensional chains of copper nanoparticles under CO2RR conditions. Furthermore, CuI and Cu2O particles re-precipitated when the samples are returned to open circuit potential, implying that iodide and Cu+ species are present within these chains. This work provides detailed insight into the role of iodide, and its impact on the prevailing morphologies that exist during CO2RR
New limits on from meson decays
In this letter we show that pseudoscalar meson leptonic decay data can be
used to set stringent limits on the mass of a right-handed vector
boson, such as the one that appears in left-right symmetric models. We have
shown that for a heavy neutrino with a mass in the range one can constraint TeV at 90 % CL. This
provides the most stringent experimental limits on the mass to date.Comment: 6 pages, 2 figure
Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing
Precise clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genetic and epigenetic manipulation of the immune response has become a promising immunotherapeutic approach towards combating tumorigenesis and tumor progression. CRISPR-based immunologic reprograming in cancer therapy comprises the locus-specific enhancement of host immunity, the improvement of tumor immunogenicity and the suppression of tumor immunoevasion. To date, the ex vivo re-engineering of immune cells directed to inhibit the expression of immune checkpoints or to express synthetic immune receptors (chimeric antigen receptor therapy) has shown success in some settings, such as in the treatment of melanoma, lymphoma, liver and lung cancer. However, advancements in nuclease-deactivated CRISPR-associated nuclease-9 (dCas9)-mediated transcriptional activation or repression and Cas13-directed gene suppression presents novel avenues for the development of tumor immunotherapies. In this review, the basis for development, mechanism of action and outcomes from recently published Cas9-based clinical trial (genetic editing) and dCas9/Cas13-based pre-clinical (epigenetic editing) data are discussed. Lastly, we review cancer immunotherapy-specific considerations and barriers surrounding use of these approaches in the clinic
Application of fuzzy integrated FMEA with product lifetime consideration for new product development in flexible electronics industry
Purpose: the aim of this paper is to minimize the risks of new product development and shorten time-to-market, particularly for high-tech enterprise where the complexity of the product generates vast amount of failure mode. Design/methodology/approach: first, the concept of Critical Consideration Factor (CCF) is introduced based on product-specific technical characteristics, expected lifetime, and yield requirement to identify and prioritize the critical failure mode in the subsequent Failure Mode and Effect Analysis (FMEA), followed by process characterization on the high-risk failure mode and Critical Parameter Management (CPM) practice to realize a robust mass production system of the developed technology. The application on the development of advanced flexible substrate and surface finishes fabrication technique is presented. Findings: through the proposed methodology, the risk level of each potential failure mode can be accurately quantified to identify the critical variables. With process characterization, reliability of the product is ensured. Consequently, significant reduction in development resources and time-to-market can be achieved. Practical implications: the development strategy allows high tech enterprises to achieve a balanced ecosystem in which value created through adaption of new technology/product can be thoroughly captured through commercialization in a timely manner with no field failure. Originality/value: the proposed development strategy utilizes a unique approach with thorough considerations that enables high tech enterprise to deliver new product with rapid time-to-market without sacrificing product lifetime reliability, which is key to achieve competitive advantage in the highly dynamic market.Peer Reviewe
Accuracy of Second Order Perturbation theory in the Polaron and Variational Polaron Frames
In the study of open quantum systems, the polaron transformation has recently
attracted a renewed interest as it offers the possibility to explore the strong
system-bath coupling regime. Despite this interest, a clear and unambiguous
analysis of the regimes of validity of the polaron transformation is still
lacking. Here we provide such a benchmark, comparing second order perturbation
theory results in the original untransformed frame, the polaron frame and the
variational extension with numerically exact path integral calculations of the
equilibrium reduced density matrix. Equilibrium quantities allow a direct
comparison of the three methods without invoking any further approximations as
is usually required in deriving master equations. It is found that the second
order results in the original frame are accurate for weak system-bath coupling,
the full polaron results are accurate in the opposite regime of strong
coupling, and the variational method is capable of interpolating between these
two extremes. As the bath becomes more non-Markovian (slow bath), all three
approaches become less accurate.Comment: 16 pages, 5 figures, typos correcte
- …