836 research outputs found

    The graph bottleneck identity

    Get PDF
    A matrix S=(sij)Rn×nS=(s_{ij})\in{\mathbb R}^{n\times n} is said to determine a \emph{transitional measure} for a digraph GG on nn vertices if for all i,j,k{1,.˙.,n},i,j,k\in\{1,\...,n\}, the \emph{transition inequality} sijsjksiksjjs_{ij} s_{jk}\le s_{ik} s_{jj} holds and reduces to the equality (called the \emph{graph bottleneck identity}) if and only if every path in GG from ii to kk contains jj. We show that every positive transitional measure produces a distance by means of a logarithmic transformation. Moreover, the resulting distance d(,)d(\cdot,\cdot) is \emph{graph-geodetic}, that is, d(i,j)+d(j,k)=d(i,k)d(i,j)+d(j,k)=d(i,k) holds if and only if every path in GG connecting ii and kk contains jj. Five types of matrices that determine transitional measures for a digraph are considered, namely, the matrices of path weights, connection reliabilities, route weights, and the weights of in-forests and out-forests. The results obtained have undirected counterparts. In [P. Chebotarev, A class of graph-geodetic distances generalizing the shortest-path and the resistance distances, Discrete Appl. Math., URL http://dx.doi.org/10.1016/j.dam.2010.11.017] the present approach is used to fill the gap between the shortest path distance and the resistance distance.Comment: 12 pages, 18 references. Advances in Applied Mathematic

    Spanning Forests and the Golden Ratio

    Get PDF
    For a graph G, let f_{ij} be the number of spanning rooted forests in which vertex j belongs to a tree rooted at i. In this paper, we show that for a path, the f_{ij}'s can be expressed as the products of Fibonacci numbers; for a cycle, they are products of Fibonacci and Lucas numbers. The {\em doubly stochastic graph matrix} is the matrix F=(f_{ij})/f, where f is the total number of spanning rooted forests of G and n is the number of vertices in G. F provides a proximity measure for graph vertices. By the matrix forest theorem, F^{-1}=I+L, where L is the Laplacian matrix of G. We show that for the paths and the so-called T-caterpillars, some diagonal entries of F (which provides a measure of the self-connectivity of vertices) converge to \phi^{-1} or to 1-\phi^{-1}, where \phi is the golden ratio, as the number of vertices goes to infinity. Thereby, in the asymptotic, the corresponding vertices can be metaphorically considered as "golden introverts" and "golden extroverts," respectively. This metaphor is reinforced by a Markov chain interpretation of the doubly stochastic graph matrix, according to which F equals the overall transition matrix of a random walk with a random number of steps on G.Comment: 12 pages, 2 figures, 25 references. As accepted by Disc. Appl. Math. (2007

    Simple expressions for the long walk distance

    Full text link
    The walk distances in graphs are defined as the result of appropriate transformations of the k=0(tA)k\sum_{k=0}^\infty(tA)^k proximity measures, where AA is the weighted adjacency matrix of a connected weighted graph and tt is a sufficiently small positive parameter. The walk distances are graph-geodetic, moreover, they converge to the shortest path distance and to the so-called long walk distance as the parameter tt approaches its limiting values. In this paper, simple expressions for the long walk distance are obtained. They involve the generalized inverse, minors, and inverses of submatrices of the symmetric irreducible singular M-matrix L=ρIA,{\cal L}=\rho I-A, where ρ\rho is the Perron root of A.A.Comment: 7 pages. Accepted for publication in Linear Algebra and Its Application

    Extending Utility Representations of Partial Orders

    Full text link
    The problem is considered as to whether a monotone function defined on a subset P of a Euclidean space can be strictly monotonically extended to the whole space. It is proved that this is the case if and only if the function is {\em separably increasing}. Explicit formulas are given for a class of extensions which involves an arbitrary bounded increasing function. Similar results are obtained for monotone functions that represent strict partial orders on arbitrary abstract sets X. The special case where P is a Pareto subset is considered.Comment: 15 page

    Do logarithmic proximity measures outperform plain ones in graph clustering?

    Full text link
    We consider a number of graph kernels and proximity measures including commute time kernel, regularized Laplacian kernel, heat kernel, exponential diffusion kernel (also called "communicability"), etc., and the corresponding distances as applied to clustering nodes in random graphs and several well-known datasets. The model of generating random graphs involves edge probabilities for the pairs of nodes that belong to the same class or different predefined classes of nodes. It turns out that in most cases, logarithmic measures (i.e., measures resulting after taking logarithm of the proximities) perform better while distinguishing underlying classes than the "plain" measures. A comparison in terms of reject curves of inter-class and intra-class distances confirms this conclusion. A similar conclusion can be made for several well-known datasets. A possible origin of this effect is that most kernels have a multiplicative nature, while the nature of distances used in cluster algorithms is an additive one (cf. the triangle inequality). The logarithmic transformation is a tool to transform the first nature to the second one. Moreover, some distances corresponding to the logarithmic measures possess a meaningful cutpoint additivity property. In our experiments, the leader is usually the logarithmic Communicability measure. However, we indicate some more complicated cases in which other measures, typically, Communicability and plain Walk, can be the winners.Comment: 11 pages, 5 tables, 9 figures. Accepted for publication in the Proceedings of 6th International Conference on Network Analysis, May 26-28, 2016, Nizhny Novgorod, Russi
    corecore