296 research outputs found
Query processing of spatial objects: Complexity versus Redundancy
The management of complex spatial objects in applications, such as geography and cartography,
imposes stringent new requirements on spatial database systems, in particular on efficient
query processing. As shown before, the performance of spatial query processing can be improved
by decomposing complex spatial objects into simple components. Up to now, only decomposition
techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have
been considered. In this paper, we will investigate the natural trade-off between the complexity of
the components and the redundancy, i.e. the number of components, with respect to its effect on
efficient query processing. In particular, we present two new decomposition methods generating
a better balance between the complexity and the number of components than previously known
techniques. We compare these new decomposition methods to the traditional undecomposed representation
as well as to the well-known decomposition into convex polygons with respect to their
performance in spatial query processing. This comparison points out that for a wide range of query
selectivity the new decomposition techniques clearly outperform both the undecomposed representation
and the convex decomposition method. More important than the absolute gain in performance
by a factor of up to an order of magnitude is the robust performance of our new decomposition
techniques over the whole range of query selectivity
Bregman Voronoi Diagrams: Properties, Algorithms and Applications
The Voronoi diagram of a finite set of objects is a fundamental geometric
structure that subdivides the embedding space into regions, each region
consisting of the points that are closer to a given object than to the others.
We may define many variants of Voronoi diagrams depending on the class of
objects, the distance functions and the embedding space. In this paper, we
investigate a framework for defining and building Voronoi diagrams for a broad
class of distance functions called Bregman divergences. Bregman divergences
include not only the traditional (squared) Euclidean distance but also various
divergence measures based on entropic functions. Accordingly, Bregman Voronoi
diagrams allow to define information-theoretic Voronoi diagrams in statistical
parametric spaces based on the relative entropy of distributions. We define
several types of Bregman diagrams, establish correspondences between those
diagrams (using the Legendre transformation), and show how to compute them
efficiently. We also introduce extensions of these diagrams, e.g. k-order and
k-bag Bregman Voronoi diagrams, and introduce Bregman triangulations of a set
of points and their connexion with Bregman Voronoi diagrams. We show that these
triangulations capture many of the properties of the celebrated Delaunay
triangulation. Finally, we give some applications of Bregman Voronoi diagrams
which are of interest in the context of computational geometry and machine
learning.Comment: Extend the proceedings abstract of SODA 2007 (46 pages, 15 figures
The Littlewood-Gowers problem
We show that if A is a subset of Z/pZ (p a prime) of density bounded away
from 0 and 1 then the A(Z/pZ)-norm (that is the l^1-norm of the Fourier
transform) of the characterstic function of A is bounded below by an absolute
constant times (log p)^{1/2 - \epsilon} as p tends to infinity. This improves
on the exponent 1/3 in recent work of Green and Konyagin.Comment: 31 pp. Corrected typos. Updated references
On colouring point visibility graphs
In this paper we show that it can be decided in polynomial time whether or
not the visibility graph of a given point set is 4-colourable, and such a
4-colouring, if it exists, can also be constructed in polynomial time. We show
that the problem of deciding whether the visibility graph of a point set is
5-colourable, is NP-complete. We give an example of a point visibility graph
that has chromatic number 6 while its clique number is only 4
On Generalizations of Network Design Problems with Degree Bounds
Iterative rounding and relaxation have arguably become the method of choice
in dealing with unconstrained and constrained network design problems. In this
paper we extend the scope of the iterative relaxation method in two directions:
(1) by handling more complex degree constraints in the minimum spanning tree
problem (namely, laminar crossing spanning tree), and (2) by incorporating
`degree bounds' in other combinatorial optimization problems such as matroid
intersection and lattice polyhedra. We give new or improved approximation
algorithms, hardness results, and integrality gaps for these problems.Comment: v2, 24 pages, 4 figure
Flip Distance Between Triangulations of a Simple Polygon is NP-Complete
Let T be a triangulation of a simple polygon. A flip in T is the operation of
removing one diagonal of T and adding a different one such that the resulting
graph is again a triangulation. The flip distance between two triangulations is
the smallest number of flips required to transform one triangulation into the
other. For the special case of convex polygons, the problem of determining the
shortest flip distance between two triangulations is equivalent to determining
the rotation distance between two binary trees, a central problem which is
still open after over 25 years of intensive study. We show that computing the
flip distance between two triangulations of a simple polygon is NP-complete.
This complements a recent result that shows APX-hardness of determining the
flip distance between two triangulations of a planar point set.Comment: Accepted versio
Most vital segment barriers
We study continuous analogues of "vitality" for discrete network flows/paths,
and consider problems related to placing segment barriers that have highest
impact on a flow/path in a polygonal domain. This extends the graph-theoretic
notion of "most vital arcs" for flows/paths to geometric environments. We give
hardness results and efficient algorithms for various versions of the problem,
(almost) completely separating hard and polynomially-solvable cases
A linear-time algorithm for constructing a circular visibility diagram
To computer circular visibility inside a simple polygon, circular arcs that emanate from a given interior point are classified with respect to the edges of the polygon they first intersect. Representing these sets of circular arcs by their centers results in a planar partition called the circular visibility diagram. An O(n) algorithm is given for constructing the circular visibility diagram for a simple polygon with n vertices.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41346/1/453_2005_Article_BF01206329.pd
Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV
A search for pair-production of supersymmetric particles under the assumption
that R-parity is violated via a dominant LQDbar coupling has been performed
using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV.
The observed candidate events in the data are in agreement with the Standard
Model expectation. This result is translated into lower limits on the masses of
charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for
m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81
GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the
95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure
Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions
Data taken with the ALEPH detector at LEP1 have been used to search for gamma
gamma production of the glueball candidates f0(1500) and fJ(1710) via their
decay to pi+pi-. No signal is observed and upper limits to the product of gamma
gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have
been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) <
0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV
at 95% confidence level.Comment: 10 pages, 3 figure
- …