24 research outputs found

    The distribution of doublecortin-immunopositive cells in the brains of four afrotherian mammals : the Hottentot golden mole (Amblysomus hottentotus), the rock hyrax (Procavia capensis), the eastern rock sengi (Elephantulus myurus) and the four-toed sengi (Petrodromus tetradactylus)

    Get PDF
    Adult neurogenesis in the mammalian brain is now a widely accepted phenomenon, typically occurring in two forebrain structures: the subgranular zone (SGZ) of the hippocampal dentate gyrus and the subventricular zone (SVZ). Until recently, the majority of studies have focused on laboratory rodents, and it is under debate whether the process of adult neurogenesis occurs outside of the SGZ and the SVZ in other mammalian species. In the present study, we investigated potential adult neurogenetic sites in the brains of two elephant shrews/sengis, a golden mole and a rock hyrax, all members of the superorder Afrotheria. Doublecortin (DCX) immunoreactivity was used as a proxy to visualise adult neurogenesis, which is expressed in neuronal precursor cells and immature neurons. In all four species, densely packed DCX-positive cells were present in the SVZ, from where cells appear to migrate along the rostral migratory stream towards the olfactory bulb (OB). DCX-immunopositive cells were present in the granular cell layer and the glomerular layer of the OB. In the hippocampus, DCX-immunopositive cells were observed in the SGZ and in the granular layer of the dentate gyrus, with DCX-immunopositive processes extending into the molecular layer. In addition to these well-established adult neurogenic regions, DCX-immunopositive cells were also observed in layer II of the neocortex and the piriform cortex. While the present study reveals a similar pattern of adult neurogenesis to that reported previously in other mammals, further studies are needed to clarify if the cortical DCX-immunopositive cells are newly generated neurons or cells undergoing cortical remodelling.South African National Research Foundation, the Swiss-South African Joint Research Program, the Belgian co-operation service at the Royal Museum for Central Africa and by a fellowship within the Postdoctoral-Program of the German Academic Exchange Service, DAAD.http://www.karger.com/Journal/Home/223831hb201

    Initial findings from a novel population-based child mortality surveillance approach: a descriptive study.

    Get PDF
    --- - Label: BACKGROUND NlmCategory: BACKGROUND content: "Sub-Saharan Africa and south Asia contributed 81% of 5\xC2\xB79 million under-5 deaths and 77% of 2\xC2\xB76 million stillbirths worldwide in 2015. Vital registration and verbal autopsy data are mainstays for the estimation of leading causes of death, but both are non-specific and focus on a single underlying cause. We aimed to provide granular data on the contributory causes of death in stillborn fetuses and in deceased neonates and children younger than 5 years, to inform child mortality prevention efforts." - Label: METHODS NlmCategory: METHODS content: "The Child Health and Mortality Prevention Surveillance (CHAMPS) Network was established at sites in seven countries (Baliakandi, Bangladesh; Harar and Kersa, Ethiopia; Siaya and Kisumu, Kenya; Bamako, Mali; Manhi\xC3\xA7a, Mozambique; Bombali, Sierra Leone; and Soweto, South Africa) to collect standardised, population-based, longitudinal data on under-5 mortality and stillbirths in sub-Saharan Africa and south Asia, to improve the accuracy of determining causes of death. Here, we analysed data obtained in the first 2 years after the implementation of CHAMPS at the first five operational sites, during which surveillance and post-mortem diagnostics, including minimally invasive tissue sampling (MITS), were used. Data were abstracted from all available clinical records of deceased children, and relevant maternal health records were also extracted for stillbirths and neonatal deaths, to incorporate reported pregnancy or delivery complications. Expert panels followed standardised procedures to characterise causal chains leading to death, including underlying, intermediate (comorbid or antecedent causes), and immediate causes of death for stillbirths, neonatal deaths, and child (age 1-59 months) deaths." - Label: FINDINGS NlmCategory: RESULTS content: Between Dec 10, 2016, and Dec 31, 2018, MITS procedures were implemented at five sites in Mozambique, South Africa, Kenya, Mali, and Bangladesh. We screened 2385 death notifications for inclusion eligibility, following which 1295 families were approached for consent; consent was provided for MITS by 963 (74%) of 1295 eligible cases approached. At least one cause of death was identified in 912 (98%) of 933 cases (180 stillbirths, 449 neonatal deaths, and 304 child deaths); two or more conditions were identified in the causal chain for 585 (63%) of 933 cases. The most common underlying causes of stillbirth were perinatal asphyxia or hypoxia (130 [72%] of 180 stillbirths) and congenital infection or sepsis (27 [15%]). The most common underlying causes of neonatal death were preterm birth complications (187 [42%] of 449 neonatal deaths), perinatal asphyxia or hypoxia (98 [22%]), and neonatal sepsis (50 [11%]). The most common underlying causes of child deaths were congenital birth defects (39 [13%] of 304 deaths), lower respiratory infection (37 [12%]), and HIV (35 [12%]). In 503 (54%) of 933 cases, at least one contributory pathogen was identified. Cytomegalovirus, Escherichia coli, group B Streptococcus, and other infections contributed to 30 (17%) of 180 stillbirths. Among neonatal deaths with underlying prematurity, 60% were precipitated by other infectious causes. Of the 275 child deaths with infectious causes, the most common contributory pathogens were Klebsiella pneumoniae (86 [31%]), Streptococcus pneumoniae (54 [20%]), HIV (40 [15%]), and cytomegalovirus (34 [12%]), and multiple infections were common. Lower respiratory tract infection contributed to 174 (57%) of 304 child deaths. - Label: INTERPRETATION NlmCategory: CONCLUSIONS content: Cause of death determination using MITS enabled detailed characterisation of contributing conditions. Global estimates of child mortality aetiologies, which are currently based on a single syndromic cause for each death, will be strengthened by findings from CHAMPS. This approach adds specificity and provides a more complete overview of the chain of events leading to death, highlighting multiple potential interventions to prevent under-5 mortality and stillbirths. - Label: FUNDING NlmCategory: BACKGROUND content: Bill & Melinda Gates Foundation

    Potential of Minimally Invasive Tissue Sampling for Attributing Specific Causes of Childhood Deaths in South Africa: A Pilot, Epidemiological Study

    Get PDF
    Background. Current estimates for causes of childhood deaths are mainly premised on modeling of vital registration and limited verbal autopsy data and generally only characterize the underlying cause of death (CoD). We investigated the potential of minimally invasive tissue sampling (MITS) for ascertaining the underlying and immediate CoD in children 1 month to 14 years of age. Methods. MITS included postmortem tissue biopsies of brain, liver, and lung for histopathology examination; microbial culture of blood, cerebrospinal fluid (CSF), liver, and lung samples; and molecular microbial testing on blood, CSF, lung, and rectal swabs. Each case was individually adjudicated for underlying, antecedent, and immediate CoD by an international multidisciplinary team of medical experts and coded using the International Classification of Diseases, Tenth Revision (ICD-10). Results. An underlying CoD was determined for 99% of 127 cases, leading causes being congenital malformations (18.9%), complications of prematurity (14.2%), human immunodeficiency virus/AIDS (12.6%), diarrheal disease (8.7%), acute respiratory infections (7.9%), injuries (7.9%), and malignancies (7.1%). The main immediate CoD was pneumonia, sepsis, and diarrhea in 33.9%, 19.7%, and 10.2% of cases, respectively. Infection-related deaths were either an underlying or immediate CoD in 78.0% of cases. Community-acquired pneumonia deaths (n = 32) were attributed to respiratory syncytial virus (21.9%), Pneumocystis jirovecii (18.8%), cytomegalovirus (15.6%), Klebsiella pneumoniae (15.6%), and Streptococcus pneumoniae (12.5%). Seventy-one percent of 24 sepsis deaths were hospital-acquired, mainly due to Acinetobacter baumannii (47.1%) and K. pneumoniae (35.3%). Sixty-two percent of cases were malnourished. Conclusions. MITS, coupled with antemortem clinical information, provides detailed insight into causes of childhood deaths that could be informative for prioritization of strategies aimed at reducing under-5 mortality

    Unraveling Specific Causes of Neonatal Mortality Using Minimally Invasive Tissue Sampling: An Observational Study

    Get PDF
    Background. Postmortem minimally invasive tissue sampling (MITS) is a potential alternative to the gold standard complete diagnostic autopsy for identifying specific causes of childhood deaths. We investigated the utility of MITS, interpreted with available clinical data, for attributing underlying and immediate causes of neonatal deaths. Methods. This prospective, observational pilot study enrolled neonatal deaths at Chris Hani Baragwanath Academic Hospital in Soweto, South Africa. The MITS included needle core-biopsy sampling for histopathology of brain, lung, and liver tissue. Microbiological culture and/or molecular tests were performed on lung, liver, blood, cerebrospinal fluid, and stool samples. The “underlying” and “immediate” causes of death (CoD) were determined for each case by an international panel of 12–15 medical specialists. Results. We enrolled 153 neonatal deaths, 106 aged 3–28 days. Leading underlying CoD included “complications of prematurity” (52.9%), “complications of intrapartum events” (15.0%), “congenital malformations” (13.1%), and “infection related” (9.8%). Overall, infections were the immediate or underlying CoD in 57.5% (n = 88) of all neonatal deaths, including the immediate CoD in 70.4% (58/81) of neonates with “complications of prematurity” as the underlying cause. Overall, 74.4% of 90 infection-related deaths were hospital acquired, mainly due to multidrug-resistant Acinetobacter baumannii (52.2%), Klebsiella pneumoniae (22.4%), and Staphylococcus aureus (20.9%). Streptococcus agalactiae was the most common pathogen (5/15 [33.3%]) among deaths with “infections” as the underlying cause. Conclusions. MITS has potential to address the knowledge gap on specific causes of neonatal mortality. In our setting, this included the hitherto underrecognized dominant role of hospital-acquired multidrug-resistant bacterial infections as the leading immediate cause of neonatal deaths

    Initial findings from a novel population-based child mortality surveillance approach: a descriptive study.

    Get PDF
    BACKGROUND: Sub-Saharan Africa and south Asia contributed 81% of 5·9 million under-5 deaths and 77% of 2·6 million stillbirths worldwide in 2015. Vital registration and verbal autopsy data are mainstays for the estimation of leading causes of death, but both are non-specific and focus on a single underlying cause. We aimed to provide granular data on the contributory causes of death in stillborn fetuses and in deceased neonates and children younger than 5 years, to inform child mortality prevention efforts. METHODS: The Child Health and Mortality Prevention Surveillance (CHAMPS) Network was established at sites in seven countries (Baliakandi, Bangladesh; Harar and Kersa, Ethiopia; Siaya and Kisumu, Kenya; Bamako, Mali; Manhiça, Mozambique; Bombali, Sierra Leone; and Soweto, South Africa) to collect standardised, population-based, longitudinal data on under-5 mortality and stillbirths in sub-Saharan Africa and south Asia, to improve the accuracy of determining causes of death. Here, we analysed data obtained in the first 2 years after the implementation of CHAMPS at the first five operational sites, during which surveillance and post-mortem diagnostics, including minimally invasive tissue sampling (MITS), were used. Data were abstracted from all available clinical records of deceased children, and relevant maternal health records were also extracted for stillbirths and neonatal deaths, to incorporate reported pregnancy or delivery complications. Expert panels followed standardised procedures to characterise causal chains leading to death, including underlying, intermediate (comorbid or antecedent causes), and immediate causes of death for stillbirths, neonatal deaths, and child (age 1-59 months) deaths. FINDINGS: Between Dec 10, 2016, and Dec 31, 2018, MITS procedures were implemented at five sites in Mozambique, South Africa, Kenya, Mali, and Bangladesh. We screened 2385 death notifications for inclusion eligibility, following which 1295 families were approached for consent; consent was provided for MITS by 963 (74%) of 1295 eligible cases approached. At least one cause of death was identified in 912 (98%) of 933 cases (180 stillbirths, 449 neonatal deaths, and 304 child deaths); two or more conditions were identified in the causal chain for 585 (63%) of 933 cases. The most common underlying causes of stillbirth were perinatal asphyxia or hypoxia (130 [72%] of 180 stillbirths) and congenital infection or sepsis (27 [15%]). The most common underlying causes of neonatal death were preterm birth complications (187 [42%] of 449 neonatal deaths), perinatal asphyxia or hypoxia (98 [22%]), and neonatal sepsis (50 [11%]). The most common underlying causes of child deaths were congenital birth defects (39 [13%] of 304 deaths), lower respiratory infection (37 [12%]), and HIV (35 [12%]). In 503 (54%) of 933 cases, at least one contributory pathogen was identified. Cytomegalovirus, Escherichia coli, group B Streptococcus, and other infections contributed to 30 (17%) of 180 stillbirths. Among neonatal deaths with underlying prematurity, 60% were precipitated by other infectious causes. Of the 275 child deaths with infectious causes, the most common contributory pathogens were Klebsiella pneumoniae (86 [31%]), Streptococcus pneumoniae (54 [20%]), HIV (40 [15%]), and cytomegalovirus (34 [12%]), and multiple infections were common. Lower respiratory tract infection contributed to 174 (57%) of 304 child deaths. INTERPRETATION: Cause of death determination using MITS enabled detailed characterisation of contributing conditions. Global estimates of child mortality aetiologies, which are currently based on a single syndromic cause for each death, will be strengthened by findings from CHAMPS. This approach adds specificity and provides a more complete overview of the chain of events leading to death, highlighting multiple potential interventions to prevent under-5 mortality and stillbirths. FUNDING: Bill & Melinda Gates Foundation

    Adult neurogenesis in eight Megachiropteran species

    No full text
    The present study evaluated, using immunohistochemical methods, the presence and characteristics of proliferating and newly generated neurons in the brain of eight wild-caught adult Megachiropteran species. For the neurogenic patterns observed, direct homologies are evident in other mammalian species; however, there were several distinctions in the presence or absence of proliferating and immature neurons, and migratory streams that provide important clues regarding the use of the brain in the analysis of Chiropteran phylogenetic affinities. In all eight species studied, numerous Ki-67- and doublecortin (DCX)-immunopositive cells were identified in the subventricular zone (SVZ). These cells migrated to the olfactory bulb through a Primate-like rostral migratory stream (RMS) that is composed of dorsal and ventral substreams which merge before entering the olfactory bulb. Some cells were observed emerging from the RMS coursing caudally and dorsally to the rostral neocortex. In the dentate gyrus of all species, Ki-67- and DCX-expressing cells were observed in the granular cell layer and hilus. Similar to Primates, proliferating cells and immature neurons were identified in the SVZ of the temporal horn of Megachiropterans. These cells migrated to the rostral and caudal piriform cortex through a Primate-like temporal migratory stream. Sparsely distributed Ki-67-immunopositive, but DCX-immunonegative, cells were identified in the tectum, brainstem and cerebellum. The observations from this study add to a number of neural characteristics that phylogenetically align Megachiropterans to Primates

    The Distribution of Doublecortin-Immunopositive Cells in the Brains of Four Afrotherian Mammals: the Hottentot Golden Mole (Amblysomus hottentotus)

    No full text
    Adult neurogenesis in the mammalian brain is now a widely accepted phenomenon, typically occurring in two forebrain structures: the subgranular zone (SGZ) of the hippocampal dentate gyrus and the subventricular zone (SVZ). Until recently, the majority of studies have focused on laboratory rodents, and it is under debate whether the process of adult neurogenesis occurs outside of the SGZ and the SVZ in other mammalian species. In the present study, we investigated potential adult neurogenetic sites in the brains of two elephant shrews/sengis, a golden mole and a rock hyrax, all members of the superorder Afrotheria. Doublecortin (DCX) immunoreactivity was used as a proxy to visualise adult neu- rogenesis, which is expressed in neuronal precursor cells and immature neurons. In all four species, densely packed DCXpositive cells were present in the SVZ, from where cells appear to migrate along the rostral migratory stream towards the olfactory bulb (OB). DCX-immunopositive cells were present in the granular cell layer and the glomerular layer of the OB. In the hippocampus, DCX-immunopositive cells were observed in the SGZ and in the granular layer of the dentate gyrus, with DCX-immunopositive processes extending into the molecular layer. In addition to these well-established adult neurogenic regions, DCX-immunopositive cells were also observed in layer II of the neocortex and the piriform cortex. While the present study reveals a similar pattern of adult neurogenesis to that reported previously in other mammals, further studies are needed to clarify if the cortical DCX-immunopositive cells are newly generated neurons or cells undergoing cortical remodelling.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Microbats appear to have adult hippocampal neurogenesis, but post-capture stress causes a rapid decline in the number of neurons expressing doublecortin

    No full text
    A previous study investigating potential adult hippocampal neurogenesis in microchiropteran bats failed to reveal a strong presence of this neural trait. As microchiropterans have a high field metabolic rate and a small body mass, it is possible that capture/handling stress may lead to a decrease in the detectable presence of adult hippocampal neurogenesis. Here we looked for evidence of adult hippocampal neurogenesis using immunohistochemical techniques for the endogenous marker doublecortin (DCX) in 10 species of microchiropterans euthanized and perfusion fixed at specific time points following capture. Our results reveal that when euthanized and perfused within 15 min of capture, abundant putative adult hippocampal neurogenesis could be detected using DCX immunohistochemistry. Between 15 and 30 min post-capture, the detectable levels of DCX dropped dramatically and after 30 min post-capture, immunohistochemistry for DCX could not reveal any significant evidence of putative adult hippocampal neurogenesis. Thus, as with all other mammals studied to date apart from cetaceans, bats, including both microchiropterans and megachiropterans, appear to exhibit substantial levels of adult hippocampal neurogenesis. The present study underscores the concept that, as with laboratory experiments, studies conducted on wild-caught animals need to be cognizant of the fact that acute stress (capture/handling) may induce major changes in the appearance of specific neural traits
    corecore