97 research outputs found
Magnetic domain walls displacement : automotion vs. spin-transfer torque
The magnetization dynamics equation predicts that a domain wall that changes
structure should undergo a displacement by itself - automotion - due to the
relaxation of the linear momentum that is associated with the wall structure.
We experimentally demonstrate this effect in soft nanostrips,transforming under
spin transfer torque a metastable asymmetric transverse wall into a vortex
wall. Displacements more than three times as large as under spin transfer
torque only are measured for 1~ns pulses. The results are explained by
analytical and numerical micromagnetics. Their relevance to domain wall motion
under spin transfer torque is emphasized
Hybrid chiral domain walls and skyrmions in magnetic multilayers
Noncollinear spin textures in ferromagnetic ultrathin films are currently the
subject of renewed interest since the discovery of the interfacial
Dzyaloshinskii-Moriya interaction (DMI). This antisymmetric exchange
interaction selects a given chirality for the spin textures and allows
stabilising configurations with nontrivial topology. Moreover, it has many
crucial consequences on the dynamical properties of these topological
structures, including chiral domain walls (DWs) and magnetic skyrmions. In the
recent years the study of noncollinear spin textures has been extended from
single ultrathin layers to magnetic multilayers with broken inversion symmetry.
This extension of the structures in the vertical dimension allows very
efficient current-induced motion and room-temperature stability for both N\'eel
DWs and skyrmions. Here we show how in such multilayered systems the interlayer
interactions can actually lead to more complex, hybrid chiral magnetisation
arrangements. The described thickness-dependent reorientation of DWs is
experimentally confirmed by studying demagnetised multilayers through circular
dichroism in x-ray resonant magnetic scattering. We also demonstrate a simple
yet reliable method for determining the magnitude of the DMI from static
domains measurements even in the presence of these hybrid chiral structures, by
taking into account the actual profile of the DWs. The advent of these novel
hybrid chiral textures has far-reaching implications on how to stabilise and
manipulate DWs as well as skymionic structures in magnetic multilayers.Comment: 22 pages, 5 figure
Terahertz wave generation via optical rectification from multiferroic BiFeO3
We detected broadband coherent terahertz (THz) emission from multiferroic
BiFeO3 after illuminating a high-quality bulk single ferroelectric domain
crystal with a ~100 fs optical pulse. The dependence of the emitted THz
waveform on the energy and polarization of the optical pulse is consistent with
the optical rectification mechanism of THz emission. The THz emission provides
a sensitive probe of the electric polarization state of BiFeO3, enabling
applications in ferroelectric memories and ferroelectric domain imaging. We
also report room-temperature THz optical constants of BiFeO3.Comment: accepted for publication in Applied Physics Letter
Photovoltaic response around a unique180° ferroelectric domain wall in single crystalline BiFeO3
Using an experimental setup designed to scan a submicron sized light spot and collect the photogenerated current through larger electrodes, we map the photovoltaic response in ferroelectric BiFeO3 single crystals. We study the effect produced by a unique 180° ferroelectric domain wall (DW) and show that the photocurrent maps are significantly affected by its presence and shape. The effect is large in its vicinity and in the Schottky barriers at the interface with the Au electrodes, but no extra photocurrent is observed when the illuminating spot touches the DW, indicating that this particular entity is not the heart of specific photo-electric properties. Using 3D modelling, we argue that the measured effect is due to the spatial distribution of internal fields which are significantly affected by the charge of the DW due to its distortion
Ultrafast behavior of induced and intrinsic magnetic moments in CoFeB/Pt bilayers probed by element-specific measurements in the extreme ultraviolet spectral range
The ultrafast and element-specific response of magnetic systems containing ferromagnetic 3d transition metals and 4d/5d heavy metals is of interest both from a fundamental as well as an applied research perspective. However, to date no consensus about the main microscopic processes describing the interplay between intrinsic 3d and induced 4d/5d magnetic moments upon femtosecond laser excitation exist. In this work we study the ultrafast response of CoFeB/Pt bilayers by probing element-specific, core-to-valence-band transitions in the extreme ultraviolet spectral range using high harmonic radiation. We show that the combination of magnetic scattering simulations and analysis of the energy- and time-dependent magnetic asymmetries allows us to accurately disentangle the element-specific response in spite of overlapping Co and Fe M2,3 as well as Pt O2,3 and N7 resonances. We find a considerably smaller demagnetization time constant as well as much larger demagnetization amplitudes of the induced moment of Pt compared to the intrinsic moment of CoFeB. Our results are in agreement with enhanced spin-flip probabilities due to the high spin-orbit coupling localized at the heavy metal Pt, as well as with the recently formulated hypothesis that a laser-generated, incoherent magnon population within the ferromagnetic film leads to an overproportional reduction of the induced magnetic moment of Pt
Robust Perpendicular Skyrmions and their Surface-Confinement
Magnetic skyrmions are two-dimensional magnetization swirls that stack in the form of tubes in the third dimension and which are proposed as prospective information carriers for nonvolatile memory devices due to their unique topological properties. From resonant elastic X-ray scattering measurements on Cu2OSeO3 with an in-plane magnetic field, we find that a state of perpendicularly ordered skyrmions forms, in stark contrast to the well-studied bulk state. The surface state is stable over a wide temperature range, unlike the bulk state in out-of-plane fields which is confined to a narrow region of the temperature-field phase diagram. In contrast to ordinary skyrmions found in the bulk, the surface state skyrmions result from the presence of magnetic interactions unique to the surface which stabilize them against external perturbations. The surface guiding makes the robust state particular interesting for racetracklike devices, ultimately allowing for much higher storage densities due to the smaller lateral footprint of the perpendicular skyrmions
- …