967 research outputs found

    Dynamic multilateral markets

    Get PDF
    We study dynamic multilateral markets, in which players' payoffs result from intra-coalitional bargaining. The latter is modeled as the ultimatum game with exogenous (time-invariant) recognition probabilities and unanimity acceptance rule. Players in agreeing coalitions leave the market and are replaced by their replicas, which keeps the pool of market participants constant over time. In this infinite game, we establish payoff uniqueness of stationary equilibria and the emergence of endogenous cooperation structures when traders experience some degree of (heterogeneous) bargaining frictions. When we focus on market games with different player types, we derive, under mild conditions, an explicit formula for each type's equilibrium payoff as the market frictions vanish

    Peroxisome Proliferator-activated Receptor Îł Induces a Phenotypic Switch from Activated to Quiescent Hepatic Stellate Cells

    Get PDF
    Depletion of peroxisome proliferator-activated receptor gamma (PPARgamma) accompanies myofibroblastic transdifferentiation of hepatic stellate cells (HSC), the primary cellular event underlying liver fibrogenesis. The treatment of activated HSC in vitro or in vivo with synthetic PPARgamma ligands suppresses the fibrogenic activity of HSC. However, it is uncertain whether PPARgamma is indeed a molecular target of this effect, because the ligands are also known to have receptor-independent actions. To test this question, the present study examined the effects of forced expression of PPARgamma via an adenoviral vector on morphologic and biochemical features of culture-activated HSC. The vector-mediated expression of PPARgamma itself is sufficient to reverse the morphology of activated HSC to the quiescent phenotype with retracted cytoplasm, prominent dendritic processes, reduced stress fibers, and accumulation of retinyl palmitate. These effects are abrogated by concomitant expression of a dominant negative mutant of PPARgamma that prevents transactivation of but not binding to the PPAR response element. PPARgamma expression also inhibits the activation markers such as the expression of alpha-smooth muscle actin, type I collagen, and transforming growth factor beta1; DNA synthesis; and JunD binding to the activator protein-1 (AP-1) site and AP-1 promoter activity. Inhibited JunD activity by PPARgamma is not due to reduced JunD expression or JNK activity or to a competition for p300. But it is due to a JunD-PPARgamma interaction as demonstrated by co-immunoprecipitation and glutathione S-transferase pull-down analysis. Further, the use of deletion constructs reveals that the DNA binding region of PPARgamma is the JunD interaction domain. In summary, our results demonstrate that the restoration of PPARgamma reverses the activated HSC to the quiescent phenotype and suppresses AP-1 activity via a physical interaction between PPARgamma and JunD

    No metabolic effects of mustard allyl-isothiocyanate compared with placebo in men.

    Get PDF
    Background: Induction of nonshivering thermogenesis can be used to influence energy balance to prevent or even treat obesity. The pungent component of mustard, allyl-isothiocyanate (AITC), activates the extreme cold receptor transient receptor potential channel, subfamily A, member 1 and may thus induce energy expenditure and metabolic changes.Objective: The objective of our study was to evaluate the potential of mustard AITC to induce thermogenesis (primary outcome) and alter body temperature, cold and hunger sensations, plasma metabolic parameters, and energy intake (secondary outcomes).Design: Energy expenditure in mice was measured after subcutaneous injection with vehicle, 1 mg norepinephrine/kg, or 5 mg AITC/kg. In our human crossover study, 11 healthy subjects were studied under temperature-controlled conditions after an overnight fast. After ingestion of 10 g of capsulated mustard or uncapsulated mustard or a capsulated placebo mixture, measurements of energy expenditure, substrate oxidation, core temperature, cold and hunger scores, and plasma parameters were repeated every 30 min during a 150-min period. Subjects were randomly selected for the placebo and capsulated mustard intervention; 9 of 11 subjects received the uncapsulated mustard as the final intervention because this could not be blinded. After the experiments, energy intake was measured with the universal eating monitor in a test meal.Results: In mice, AITC administration induced a 32% increase in energy expenditure compared with vehicle (17.5 ± 4.9 J · min-1 · mouse-1 compared with 12.5 ± 1.2 J · min-1 · mouse-1, P = 0.03). Of the 11 randomly selected participants, 1 was excluded because of intercurrent illness after the first visit and 1 withdrew after the second visit. Energy expenditure did not increase after ingestion of capsulated or uncapsulated mustard compared with placebo. No differences in substrate oxidation, core temperature, cold and hunger scores, or plasma parameters were found, nor was the energy intake at the end of the experiment different between the 3 conditions.Conclusion: The highest tolerable dose of mustard we were able to use did not elicit a relevant thermogenic response in humans. This trial was registered at www.controlled-trials.com as ISRCTN19147515

    Homozygous loss-of-function mutations in SLC26A7 cause goitrous congenital hypothyroidism.

    Get PDF
    Defects in genes mediating thyroid hormone biosynthesis result in dyshormonogenic congenital hypothyroidism (CH). Here, we report homozygous truncating mutations in SLC26A7 in 6 unrelated families with goitrous CH and show that goitrous hypothyroidism also occurs in Slc26a7-null mice. In both species, the gene is expressed predominantly in the thyroid gland, and loss of function is associated with impaired availability of iodine for thyroid hormone synthesis, partially corrected in mice by iodine supplementation. SLC26A7 is a member of the same transporter family as SLC26A4 (pendrin), an anion exchanger with affinity for iodide and chloride (among others), whose gene mutations cause congenital deafness and dyshormonogenic goiter. However, in contrast to pendrin, SLC26A7 does not mediate cellular iodide efflux and hearing in affected individuals is normal. We delineate a hitherto unrecognized role for SLC26A7 in thyroid hormone biosynthesis, for which the mechanism remains unclear

    Adult-onset hyperinsulinaemic hypoglycaemia in clinical practice: diagnosis, aetiology and management.

    Get PDF
    OBJECTIVE: In adults with hyperinsulinaemic hypoglycaemia (HH), in particular those with insulinoma, the optimal diagnostic and management strategies remain uncertain. Here, we sought to characterise the biochemical and radiological assessment, and clinical management of adults with HH at a tertiary centre over a thirteen-year period. DESIGN: Clinical, biochemical, radiological and histological data were reviewed from all confirmed cases of adult-onset hyperinsulinaemic hypoglycaemia at our centre between 2003 and 2016. In a subset of patients with stage I insulinoma, whole-exome sequencing of tumour DNA was performed. RESULTS: Twenty-nine patients were identified (27 insulinoma, including 6 subjects with metastatic disease; 1 pro-insulin/GLP-1 co-secreting tumour; 1 activating glucokinase mutation). In all cases, hypoglycaemia (glucose ≀2.2 mmol/L) was achieved within 48 h of a supervised fast. At fast termination, subjects with stage IV insulinoma had significantly higher insulin, C-peptide and pro-insulin compared to those with insulinoma staged I-IIIB. Preoperative localisation of insulinoma was most successfully achieved with EUS. In two patients with inoperable, metastatic insulinoma, peptide receptor radionuclide therapy (PRRT) with 177Lu-DOTATATE rapidly restored euglycaemia and lowered fasting insulin. Finally, in a subset of stage I insulinoma, whole-exome sequencing of tumour DNA identified the pathogenic Ying Yang-1 (YY1) somatic mutation (c.C1115G/p.T372R) in one tumour, with all tumours exhibiting a low somatic mutation burden. CONCLUSION: Our study highlights, in particular, the utility of the 48-h fast in the diagnosis of insulinoma, EUS for tumour localisation and the value of PRRT therapy in the treatment of metastatic disease

    Comprehensive Screening of Eight Known Causative Genes in Congenital Hypothyroidism With Gland-in-Situ.

    Get PDF
    CONTEXT: Lower TSH screening cutoffs have doubled the ascertainment of congenital hypothyroidism (CH), particularly cases with a eutopically located gland-in-situ (GIS). Although mutations in known dyshormonogenesis genes or TSHR underlie some cases of CH with GIS, systematic screening of these eight genes has not previously been undertaken. OBJECTIVE: Our objective was to evaluate the contribution and molecular spectrum of mutations in eight known causative genes (TG, TPO, DUOX2, DUOXA2, SLC5A5, SLC26A4, IYD, and TSHR) in CH cases with GIS. Patients, Design, and Setting: We screened 49 CH cases with GIS from 34 ethnically diverse families, using next-generation sequencing. Pathogenicity of novel mutations was assessed in silico. PATIENTS, DESIGN, AND SETTING: We screened 49 CH cases with GIS from 34 ethnically diverse families, using next-generation sequencing. Pathogenicity of novel mutations was assessed in silico. RESULTS: Twenty-nine cases harbored likely disease-causing mutations. Monogenic defects (19 cases) most commonly involved TG (12), TPO (four), DUOX2 (two), and TSHR (one). Ten cases harbored triallelic (digenic) mutations: TG and TPO (one); SLC26A4 and TPO (three), and DUOX2 and TG (six cases). Novel variants overall included 15 TG, six TPO, and three DUOX2 mutations. Genetic basis was not ascertained in 20 patients, including 14 familial cases. CONCLUSIONS: The etiology of CH with GIS remains elusive, with only 59% attributable to mutations in TSHR or known dyshormonogenesis-associated genes in a cohort enriched for familial cases. Biallelic TG or TPO mutations most commonly underlie severe CH. Triallelic defects are frequent, mandating future segregation studies in larger kindreds to assess their contribution to variable phenotype. A high proportion (∌41%) of unsolved or ambiguous cases suggests novel genetic etiologies that remain to be elucidated.This study made use of data generated by the UK10K Project and we acknowledge the contribution of the UK10K Consortium. This work was supported by Wellcome Trust Grants 100585/Z/12/Z (to N.S.), and 095564/Z/11/Z (to V.K.C.) and the National Institute for Health Research Cambridge Biomedical Research Center (to V.K.C., N.S.). E.G.S and C.A.A. are supported by the Wellcome Trust (098051). Funding for the UK10K Project was provided by the Wellcome Trust under award WT091310

    Homozygous loss-of-function mutations in SLC26A7 cause goitrous congenital hypothyroidism

    Get PDF
    Defects in genes mediating thyroid hormone biosynthesis result in dyshormonogenic congenital hypothyroidism (CH). Here, we report homozygous truncating mutations in SLC26A7 in 6 unrelated families with goitrous CH and show that goitrous hypothyroidism also occurs in Slc26a7-null mice. In both species, the gene is expressed predominantly in the thyroid gland, and loss of function is associated with impaired availability of iodine for thyroid hormone synthesis, partially corrected in mice by iodine supplementation. SLC26A7 is a member of the same transporter family as SLC26A4 (pendrin), an anion exchanger with affinity for iodide and chloride (among others), whose gene mutations cause congenital deafness and dyshormonogenic goiter. However, in contrast to pendrin, SLC26A7 does not mediate cellular iodide efflux and hearing in affected individuals is normal. We delineate a hitherto unrecognized role for SLC26A7 in thyroid hormone biosynthesis, for which the mechanism remains unclear

    Search for high-mass exclusive γγ → WW and γγ → ZZ production in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    • 

    corecore