10 research outputs found

    Experimental quantification of decoherence via the Loschmidt echo in a many spin system with scaled dipolar Hamiltonians

    Get PDF
    We performed Loschmidt echo nuclear magnetic resonance experiments to study decoherence under a scaled dipolar Hamiltonian by means of a symmetrical time-reversal pulse sequence denominated Proportionally Refocused Loschmidt (PRL) echo. The many-spin system represented by the protons in polycristalline adamantane evolves through two steps of evolution characterized by the secular part of the dipolar Hamiltonian, scaled down with a factor |k| and opposite signs. The scaling factor can be varied continuously from 0 to 1/2, giving access to a range of complexity in the dynamics. The experimental results for the Loschmidt echoes showed a spreading of the decay rates that correlate directly to the scaling factors |k|, giving evidence that the decoherence is partially governed by the coherent dynamics. The average Hamiltonian theory was applied to give an insight into the spin dynamics during the pulse sequence. The calculations were performed for every single radio frequency block in contrast to the most widely used form. The first order of the average Hamiltonian numerically computed for an 8-spin system showed decay rates that progressively decrease as the secular dipolar Hamiltonian becomes weaker. Notably, the first order Hamiltonian term neglected by conventional calculations yielded an explanation for the ordering of the experimental decoherence rates. However, there is a strong overall decoherence observed in the experiments which is not reflected by the theoretical results. The fact that the non-inverted terms do not account for this effect is a challenging topic. A number of experiments to further explore the relation of the complete Hamiltonian with this dominant decoherence rate are proposed.publishedVersionFil: Buljubasich, Lisandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Sánchez, Claudia M. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Dente, Axel D. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Levstein, Patricia R. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Chattah, Ana K. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Pastawski, Horacio M. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Buljubasich, Lisandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Dente, Axel D. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Levstein, Patricia R. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Chattah, Ana K. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Pastawski, Horacio M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Física Atómica, Molecular y Química (física de átomos y moléculas incluyendo colisión, interacción con radiación, resonancia magnética, Moessbauer Efecto.

    Perturbation independent decay of the Loschmidt Echo in a Many-Body System

    Get PDF
    When a qubit or spin interacts with others under a many-body Hamiltonian, the information it contains progressively scrambles. Here, nuclear spins of an adamantane crystal are used as a quantum simulator to monitor such dynamics through out-of-time-order correlators, while a Loschmidt echo (LE) asses how weak perturbations degrade the information encoded in these increasingly complex states. Both observables involve the implementation of a time-reversal procedure which, in practice, involves inverting the sign of the effective Hamiltonian. Our protocols use periodic radio frequency pulses to modulate the natural dipolar interaction implementing a Hamiltonian that can be scaled down at will. Meanwhile, experimental errors and strength of perturbative terms remain constant and can be quantified through the LE. For each scaling factor, information spreading occurs with a timescale, T2, inversely proportional to the local second moment of the Hamiltonian. We find that, when the reversible interactions dominate over the perturbations, the information scrambled among up to 102 spins can still be recovered. However, we find that the LE decay rate cannot become smaller than a critical value 1/T3≈(0.15±0.02)/T2, which only depends on the interactions themselves, and not on the perturbations. This result shows the emergence of a regime of intrinsic irreversibility in accordance to a central hypothesis of irreversibility, hinted from previous experiments.Fil: Sánchez, Claudia Marina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Chattah, Ana Karina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Wei, K. X.. Massachusetts Institute of Technology; Estados UnidosFil: Buljubasich Gentiletti, Lisandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Cappellaro, P.. Massachusetts Institute of Technology; Estados UnidosFil: Pastawski, Horacio Miguel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentin

    Furosemide:Triethanolamine Salt as a Strategy To Improve the Biopharmaceutical Properties and Photostability of the Drug

    No full text
    With the purpose of enhancing the biopharmaceutical properties of the furosemide, a pharmaceutical salt was obtained and characterized by combining the drug and triethanolamine. The solid system was prepared using different techniques such as kneading, grinding, and slow evaporation. It was characterizated by X-ray powder diffraction, solid-state nuclear magnetic resonance, infrared and Raman spectroscopy, thermal analysis, and scanning electron microscopy. The results showed that the same pharmaceutical compound in solid state was obtained through the different preparation techniques. The crystalline structure was fully elucidated by single-crystal X-ray diffraction. The salt formation was confirmed by two-dimensional nuclear magnetic resonance experiments, which revealed the transference of the OH proton of the drug to triethanolamine. Besides, the solubility studies demonstrated an increase in the drug solubility attributed not only to a pH change but also to a soluble salt formation in solution. In addition, the combination of the drug with triethanolamine produces an enhancement of the chemical photostability, whereas the physical photostability and the hygroscopicity status were not modified. Finally, this new solid form of furosemide constitutes an interesting strategy to improve the biopharmaceutical properties and stability of furosemide, with potential application in pharmaceutical formulations

    Water and membrane dynamics in suspensions of lipid vesicles functionalized with poly(ethylene glycol)s

    Get PDF
    The present work was aimed at studying the molecular dynamics at different levels of model membranes having a simulated glycoclix, with focus on the molecular crowding conditions at the lipid–water interfacial region. Thus, binary mixtures of dipalmitoylphosphatidylcholine (dpPC) and a poly(ethylene glycol) (PEGn) derivative of dipalmitoylphosphatidylethanolamine (PE) (where n = 350, 1000, and 5000, respectively, refer to PEG molecular masses) were submitted to 1H spin–lattice relaxation time (T1) and 31P NMR spectra analysis. 1H NMR relaxation times revealed two contributing components in each proton system (PEG, phospholipids, and water), for all the mixtures studied, exhibiting values of T1 with very different orders of magnitude. This allowed identifying confined and bulk water populations as well as PEG moieties becoming more disordered and independent from the phospholipid moiety as n increased. 31P spectra showed a typical broad bilayer signal for n = 350 and 1000, and an isotropic signal characteristic of micelles for n = 5000. Surface pressure (π)–molecular area isotherms and compressional modulus measurements provided further structural information. Moreover, epifluorescence microscopy data from monolayers at π ∼ 30 mN/m, the expected equilibrium π in lipid bilayers, allowed us to postulate that both 1H populations resolved through NMR in phospholipids and lipopolymers corresponded to different phase domains.publishedVersionFil: Clop, Eduardo Matias. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Química Biológica; Argentina.Fil: Clop, Eduardo Matias. Universidad Nacional de Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Fil: Clop, Eduardo Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Fil: Chattah, Ana Karina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Chattah, Ana Karina. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina.Fil: Chattah, Ana Karina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Perillo, María Angélica. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Química Biológica; Argentina.Fil: Perillo, María Angélica. Universidad Nacional de Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Fil: Perillo, María Angélica. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Biofísic
    corecore