87 research outputs found

    Aging Influences Cardiac Mitochondrial Gene Expression and Cardiovascular Function following Hemorrhage Injury

    Get PDF
    Cardiac dysfunction and mortality associated with trauma and sepsis increase with age. Mitochondria play a critical role in the energy demand of cardiac muscles, and thereby on the function of the heart. Specific molecular pathways responsible for mitochondrial functional alterations after injury in relation to aging are largely unknown. To further investigate this, 6- and 22-month-old rats were subjected to trauma-hemorrhage (T-H) or sham operation and euthanized following resuscitation. Left ventricular tissue was profiled using our custom rodent mitochondrial gene chip (RoMitochip). Our experiments demonstrated a declined left ventricular performance and decreased alteration in mitochondrial gene expression with age following T-H and we have identified c-Myc, a pleotropic transcription factor, to be the most upregulated gene in 6- and 22-month-old rats after T-H. Following T-H, while 142 probe sets were altered significantly (39 up and 103 down) in 6-month-old rats, only 66 were altered (30 up and 36 down) in 22-month-old rats; 36 probe sets (11 up and 25 down) showed the same trend in both groups. The expression of c-Myc and cardiac death promoting gene Bnip3wereincreased, and Pgc1-α and Ppar-a a decreased following T-H. Eleven †RNA transcripts on mtDNA were upregulated following T-H in the aged animals, compared with the sham group. Our observations suggest a c-myc-regulated mitochondrial dysfunction following T-H injury and marked decrease in age-dependent changes in the transcrip-tional profile of mitochondrial genes following T-H, possibly indicating cellular senescence. To our knowledge, this is the first report on mitochondrial gene expression profile following T-H in relation to aging

    Acute Regulation of Cardiac Metabolism by the Hexosamine Biosynthesis Pathway and Protein O-GlcNAcylation

    Get PDF
    OBJECTIVE: The hexosamine biosynthesis pathway (HBP) flux and protein O-linked N-acetyl-glucosamine (O-GlcNAc) levels have been implicated in mediating the adverse effects of diabetes in the cardiovascular system. Activation of these pathways with glucosamine has been shown to mimic some of the diabetes-induced functional and structural changes in the heart; however, the effect on cardiac metabolism is not known. Therefore, the primary goal of this study was to determine the effects of glucosamine on cardiac substrate utilization. METHODS: Isolated rat hearts were perfused with glucosamine (0-10 mM) to increase HBP flux under normoxic conditions. Metabolic fluxes were determined by (13)C-NMR isotopomer analysis; UDP-GlcNAc a precursor of O-GlcNAc synthesis was assessed by HPLC and immunoblot analysis was used to determine O-GlcNAc levels, phospho- and total levels of AMPK and ACC, and membrane levels of FAT/CD36. RESULTS: Glucosamine caused a dose dependent increase in both UDP-GlcNAc and O-GlcNAc levels, which was associated with a significant increase in palmitate oxidation with a concomitant decrease in lactate and pyruvate oxidation. There was no effect of glucosamine on AMPK or ACC phosphorylation; however, membrane levels of the fatty acid transport protein FAT/CD36 were increased and preliminary studies suggest that FAT/CD36 is a potential target for O-GlcNAcylation. CONCLUSION/INTERPRETATION: These data demonstrate that acute modulation of HBP and protein O-GlcNAcylation in the heart stimulates fatty acid oxidation, possibly by increasing plasma membrane levels of FAT/CD36, raising the intriguing possibility that the HBP and O-GlcNAc turnover represent a novel, glucose dependent mechanism for regulating cardiac metabolism

    O-GlcNAc Modification of NFκB p65 Inhibits TNF-α-Induced Inflammatory Mediator Expression in Rat Aortic Smooth Muscle Cells

    Get PDF
    BACKGROUND: We have shown that glucosamine (GlcN) or O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc) treatment augments O-linked-N-acetylglucosamine (O-GlcNAc) protein modification and attenuates inflammatory mediator expression, leukocyte infiltration and neointima formation in balloon injured rat carotid arteries and have identified the arterial smooth muscle cell (SMC) as the target cell in the injury response. NFκB signaling has been shown to mediate the expression of inflammatory genes and neointima formation in injured arteries. Phosphorylation of the p65 subunit of NFκB is required for the transcriptional activation of NFκB. This study tested the hypothesis that GlcN or PUGNAc treatment protects vascular SMCs against tumor necrosis factor (TNF)-α induced inflammatory stress by enhancing O-GlcNAcylation and inhibiting TNF-α induced phosphorylation of NFκB p65, thus inhibiting NFκB signaling. METHODOLOGY/PRINCIPAL FINDINGS: Quiescent rat aortic SMCs were pretreated with GlcN (5 mM), PUGNAc (10(-4) M) or vehicle and then stimulated with TNF-α (10 ng/ml). Both treatments inhibited TNF-α-induced expression of chemokines [cytokine-induced neutrophil chemoattractant (CINC)-2β and monocyte chemotactic protein (MCP)-1] and adhesion molecules [vascular cell adhesion molecule (VCAM)-1 and P-Selectin]. Both treatments inhibited TNF-α induced NFκB p65 activation and promoter activity, increased NFκB p65 O-GlcNAcylation and inhibited NFκB p65 phosphorylation at Serine 536, thus promoting IκBα binding to NFκB p65. CONCLUSIONS: There is a reciprocal relationship between O-GlcNAcylation and phosphorylation of NFκB p65, such that increased NFκB p65 O-GlcNAc modification inhibits TNF-α-Induced expression of inflammatory mediators through inhibition of NFκB p65 signaling. These findings provide a mechanistic basis for our previous observations that GlcN and PUGNAc treatments inhibit inflammation and remodeling induced by acute endoluminal arterial injury

    Evolving norms of protection: China, Libya and the problem of intervention in armed conflict

    Get PDF
    This article examines the influence of civilian protection norms on China’s response to the 2011 crisis in Libya. It argues that Responsibility to Protect—an emerging norm commonly associated with the Libyan case—did not play a major role in China’s abstention on Resolution 1973 (2011) authorizing international intervention in Libya. For China, Responsibility to Protect is merely a concept and could not serve as the basis for intervention. Instead, Protection of Civilians in Armed Conflict, as a normative foundation for civilian protection endorsed by China, offers a more appropriate lens for understanding China’s vote. Protection of Civilians, however, does not accommodate China’s unprecedented evacuation of Chinese nationals from Libya. This operation proceeded from a third logic of Protection of Nationals Abroad, which poses dilemmas for China’s strict adherence to the principles of sovereignty and non-interference and brings to bear domestic interests and notions of protection

    Lactate – the forgotten fuel!

    No full text

    Imaging of Cardiotoxicity

    No full text
    • …
    corecore