36 research outputs found

    Single-photon entanglement generation by wavefront shaping in a multiple-scattering medium

    Full text link
    We demonstrate the control of entanglement of a single photon between several spatial modes propagating through a strongly scattering medium. Measurement of the scattering matrix allows the wavefront of the photon to be shaped to compensate the distortions induced by multiple scattering events. The photon can thus be directed coherently to a single or multi-mode output. Using this approach we show how entanglement across different modes can be manipulated despite the enormous wavefront disturbance caused by the scattering medium.Comment: 4 pages, 3 figures, reference adde

    [Re] Meta learning with differentiable closed-form solvers

    Get PDF
    In this work, we present a reproduction of the paper of Bertinetto et al. ”Meta- learning with differentiable closed-form solvers” as part of the ICLR 2019 Reproducibility Challenge. In successfully reproducing the most crucial part of the paper, we reach a performance that is comparable with or superior to the original paper on two benchmarks for several settings. We evaluate new baseline results, using a new dataset presented in the paper. Yet, we also provide multiple remarks and recommendations about reproducibility and comparability. After we brought our reproducibility work to the authorsÊŒ attention, they have updated the original paper on which this work is based and released code as well. Our contributions mainly consist in reproducing the most important results of their original paper, in giving insight in the reproducibility and in providing a first open-source implementation

    Verifiable Encodings for Secure Homomorphic Analytics

    Full text link
    Homomorphic encryption, which enables the execution of arithmetic operations directly on ciphertexts, is a promising solution for protecting privacy of cloud-delegated computations on sensitive data. However, the correctness of the computation result is not ensured. We propose two error detection encodings and build authenticators that enable practical client-verification of cloud-based homomorphic computations under different trade-offs and without compromising on the features of the encryption algorithm. Our authenticators operate on top of trending ring learning with errors based fully homomorphic encryption schemes over the integers. We implement our solution in VERITAS, a ready-to-use system for verification of outsourced computations executed over encrypted data. We show that contrary to prior work VERITAS supports verification of any homomorphic operation and we demonstrate its practicality for various applications, such as ride-hailing, genomic-data analysis, encrypted search, and machine-learning training and inference.Comment: update authors, typos corrected, scheme update

    Helium: Scalable MPC among Lightweight Participants and under Churn

    Get PDF
    We introduce Helium, a novel framework that supports scalable secure multiparty computation for lightweight participants and tolerates churn. Helium relies on multiparty homomorphic encryption (MHE) as its core building block. While MHE schemes have been well studied in theory, prior works fall short of addressing critical considerations paramount for adoption such as supporting resource-constrained participants and ensuring liveness and security under network churn. In this work, we systematize the requirements of MHE-based MPC protocols from a practical lens, and we propose a novel execution mechanism, that addresses those considerations. We implement this execution in Helium, which makes it the first implemented solution that effectively supports sub-linear-cost MPC among lightweight participants and under churn. This represents a significant leap in applied MPC, as most previously proposed frameworks require the participants to have high bandwidth and to be consistently online. We show that a Helium network of 3030 parties connected with a 100100Mbits/s link and experiencing a system-wide churn rate of 4040 failures per minute can compute the product of a fixed secret 512×512512\times512 matrix (e.g., a collectively trained model) with an input secret vector (e.g., a feature vector) 8.38.3 times per second. This is ∌1500\sim1500 times faster than a state-of-the art MPC implementation without churn

    First steps towards an advanced simulation of composites manufacturing by automated tape placement

    Get PDF
    International audienceComposite materials and their related manufacturing processes involve many modeling and simulation issues, mainly related to their multi-physics and multi-scale nature, to the strong couplings and the complex geometries. In our former works we developed a new paradigm for addressing the solution of such complex models, the so-called Proper Generalized Decomposition based model order reduction. In this work we are summarizing the most outstanding capabilities of such methodology and then all these capabilities will be put together for addressing efficiently the simulation of a challenging composites manufacturing process, the automated tape placement

    PELTA -- Shielding Multiparty-FHE against Malicious Adversaries

    Get PDF
    Multiparty fully homomorphic encryption (MFHE) schemes enable multiple parties to efficiently compute functions on their sensitive data while retaining confidentiality. However, existing MFHE schemes guarantee data confidentiality and the correctness of the computation result only against honest-but-curious adversaries. In this work, we provide the first practical construction that enables the verification of MFHE operations in zero-knowledge, protecting MFHE from malicious adversaries. Our solution relies on a combination of lattice-based commitment schemes and proof systems which we adapt to support both modern FHE schemes and their implementation optimizations. We implement our construction in PELTA. Our experimental evaluation shows that PELTA is one to two orders of magnitude faster than existing techniques in the literature

    CS8903 Special Problem : Mesh Networks for robotic teleoperation -State of the Art and Implementation for Robotics

    No full text
    ROBOTICSIn this small paper, we explore the different kind ofMesh network protocols as of today. The objective is to give tothe reader an overview of the different existing techniques andto decide which one would be the most efficient for a roboticapplication. Indeed the final goal is to realize a Mesh networkthat would enable several robots to communicate. This paperis a state of the art of Mesh application for robotics as well asa experiment review of the use of mesh network for robotics
    corecore