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Abstract

In this work, we present a reproduction of the paper of Bertinetto et al. [1] ”Meta-
learning with differentiable closed-form solvers” as part of the ICLR 2019 Reproducibility
Challenge. In successfully reproducing themost crucial part of the paper, we reach a
performance that is comparable with or superior to the original paper on two bench-
marks for several settings. We evaluate new baseline results, using a new dataset
presented in the paper. Yet, we also providemultiple remarks and recommendations
about reproducibility and comparability. After we brought our reproducibility work
to the authorsʼ attention, they have updated the original paper on which this work is
based and released code aswell. Our contributionsmainly consist in reproducing the
most important results of their original paper, in giving insight in the reproducibility
and in providing a first open-source implementation.

1 Introduction

The ability to adapt to new situations and learn quickly is a cornerstone of human intelli-
gence. When given a previously unseen task, humans can use their previous experience
and learning abilities to performwell on this new task in a matter of seconds and with a
relatively small amount of new data. Artificial learningmethods have been shown to be
very effective for specific tasks, often times surpassing human performance (Silver et al.
[2], Esteva et al. [3]). However, by relying on standard supervised-learning or reinforce-
ment learning training paradigms, these artificial methods still require much training
data and training time to adapt to a new task.
An area ofmachine learning that learns and adapts from a small amount of data is called
few-shot learning (Fei-Fei, Fergus, and Perona [4]). A shot corresponds to a single example,
e.g. an image and its label. In few-shot learning the learning scope is expanded from the
classic setting of a single task withmany shots to a variety of tasks with a few shots each.
A promising approach for few-shot learning is the field of meta-learning. Meta-learning,
also known as learning-to-learn, is a paradigm that exploits cross-task information and
training experience to perform well on a new unseen task.
In this work we reproduce the paper of Bertinetto et al. [1] (referenced as ”their paper”);
it falls into the class of gradient-based meta-learning algorithms that learn a model pa-
rameter initialization for rapidfine-tuningwith a few shots (Finn, Abbeel, andLevine [5],
Nichol and Schulman [6]). The authors present a new meta-learning method that com-
bines a deep neural network feature extractor with differentiable learning algorithms
that have closed-form solutions. This reduces the overall complexity of the gradient
based meta-learning process, while advancing the state-of-the-art in terms of accuracy
across multiple few-shot benchmarks.

Copyright © 2019 A. Devos, S. Chatel and M. Grossglauser, released under a Creative Commons Attribution 4.0 International license.
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We interactedwith the authors throughOpenReview1, bringing our reproducibilitywork
and TensorFlow code2,3 to their attention. Because of this, they updated their original
paper with more details to facilitate reproduction and they released an official PyTorch
implementation4.

2 Background in Meta-Learning

The objective of few-shot meta-learning is to train a model that can quickly adapt to a
new task by using only a few datapoints and training iterations. In our work we will con-
sider only classification tasks, but it should be noted that meta-learning is also generally
applicable to regression or reinforcement learning tasks (Finn, Abbeel, and Levine [5]).
In order to provide a solid definition of meta-learning, we need to define its different
components. We denote the set of tasks by T . A task Ti ∈ T corresponds to a classifi-
cation problem, with a probability distribution of example inputs x and (class) labels
y, (x, y) ∼ Ti. For each task, we are given training samples ZT = {(xi, yi)} ∼ T with
K shots per class and evaluation samples Z ′

T = {(x′
i, y

′
i)} ∼ T with Q shots (queries)

per class, all sampled independently from the same distribution T . In meta-learning,
we reuse the learning experience used for tasks Ti, i ∈ [0, L] to learn a new task Tj ,
where j > L, from only K examples, for every single one of the N classes in the task.
Commonly, this is denoted as an N -way K-shot problem. To this end, in meta-learning
two different kinds of learners can be at play: (1) a base-learner that works at the task
level and learns a single task (e.g. classifier with N classes) and (2) a meta-learner that
produces those model parameters that enable the fastest average fine-tuning (using the
base-learner) on unseen tasks.
The authors put a specific view of meta-learning forward. Their meta-learning system
consists of a generic feature extractorΦ(x) that is parametrized by ω, and a task-specific
predictor fT (X) that is parametrized by wT and adapts separately to every task T ∈ T
based on the few shots available. In the case of a deep neural network architecture,
this task-specific predictor fT can be seen as the last layer(s) of the network and is spe-
cific to a task T . The preceding layers Φ can be trained across tasks to provide the best
feature extraction on which the task-specific predictor can finetune with maximum per-
formance.
The base-learning phase in their paper assumes that the parameters ω of the feature
extractor Φ are fixed and computes the parameters wT of fT through a closed-form
learning process Λ. Λ, on its own, is parametrized by ρ. The meta-learning phase in
the paper learns a parametrization of Φ and Λ (respectively ω and ρ). In order to learn
those meta-parameters, the algorithmminimizes the expected loss on test sets from un-
seen tasks in T with gradient descent. The base-learning and meta-learning phases are
shown in Figures 1 and 2, respectively.

1https://openreview.net/forum?id=HyxnZh0ct7&noteId=BkxDPnDZMV
2our R2D2 and R2D2*: https://github.com/ArnoutDevos/r2d2
3our MAML on CIFAR-FS: https://github.com/ArnoutDevos/maml-CIFAR-FS
4Bertinetto et al. [1] code: https://github.com/bertinetto/r2d2
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Figure 1. Base-learning of the task-specific parameters wTi over p tasks following steps 3 to 6 of
Algorithm 3.
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Figure 2. Meta-learning of the meta-parameters ω and ρ over the evaluation sets of each task Z ′
Ti

using the previously learned wTi following steps 7 to 9 of Algorithm 3.
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Most of the recent meta-learning works are tested against image datasets and their fea-
ture extractor consists of a convolutional neural network (CNN). The variability between
works resides mainly in the base learner fT and its parameter obtaining training proce-
dure Λ. Examples are an (unparametrized) k-nearest-neighbour algorithm (Vinyals et
al. [7]), a CNN with SGD (Mishra et al. [8], and a nested SGD (Finn, Abbeel, and Levine
[5]). Systems in Vinyals et al. [7] and Snell, Swersky, and Zemel [9] are based on com-
paring new examples in a learned metric space and rely on matching. In particular,
MATCHINGNET from Vinyals et al. [7] uses neural networks augmented with memory
and recurrence with attention in a few-shot image recognition context. Mishra et al. [8]
build on this attention technique by adding temporal convolutions to reuse information
from past tasks. Another example of a matching-based method is introduced in Garcia
and Bruna [10], where a graph neural network learns the correspondence between the
training and testing sets.
A different approach is to consider the SGD update as a learnable function for meta-
learning. In particular, sequential learning algorithms, such as recurrent neural net-
works and LSTM-based methods, enable the use of long-term dependencies between
the data and gradient updates as pointed out by Ravi and Larochelle [11]. Finally, Finn,
Abbeel, andLevine [5] introduce a technique calledmodel-agnosticmeta-learning (MAML).
InMAML,meta-learning is done by backpropagating through the fine-tuning stochastic
gradient descent update of the model parameters.

3 Analysis of the R2D2 Classifier

In their paper, Bertinetto et al. [1] present a new approach that relies on using fast and
simple base learners such as ridge regression differentiable discriminator (R2D2) or (regular-
ized) logistic regression differentiable discriminator (LRD2). In our reproducibility work we
will focus on the R2D2 algorithm, because it is the only proposed algorithm with a truly
closed-form solver for the base-learner. For reproducibility purposes, we transformed
the original textual description of R2D2 in their paper into an algorithmic description
in Algorithm 3, elaborated upon in the following.
[1] Distribution of tasks T . Feature extractor Φ parameterized by ω. Finetuning pre-
dictor fT with base-learning algorithm Λ and task-specific parameters wT , and meta-
parameters ρ = (α, β, λ) Initialize Φ, Λ, and fT with pre-trained or random parameters
ω0 and ρ0 not done Sample batch of tasks Ti ∼ T all Ti Sample K datapoints for every
class from Ti and put in them in the training set ZTi

Base-learn fTi
using Λ:

Wi = wTi
= Λ(ZTi

) = XT
i (XiX

T
i + λ.I)−1Yi

withXi = Φ(ZTi
) and Yi the one-hot labels from ZTi

.
Sample datapoints for every class from Ti and put in them in the evaluation set Z ′

Ti

Update meta-parameters θ = (ω, ρ) through gradient descent :

θ ← θ − ε.
∑
i

∇θL(fTi
(Φ(Z ′

Ti
)), Y ′

i )

with ε the learning rate, L the cross-entropy loss, and fTi
(X ′

i) = αX ′
iWi + β.

In R2D2, during base-learning withZT , the linear predictor fT is adapted for each train-
ing task T , by using the learning algorithm Λ; and the meta-parameters ω (of Φ) and ρ
(of Λ) remain fixed. It is only in the meta-training phase that meta-parameters ω and ρ
are updated, by using Z ′

T . The linear predictor is seen as fT (x) = xW withW a matrix
of task-specific weights wT , and x the feature extracted version of x, x = Φ(x). This
approach leads to a ridge regression evaluation such that it learns the task weights wT :

Λ(X,Y ) = argmin
W

∥XW − Y ∥2 + λ ∥W∥2 (1)

= (XTX + λI)−1XTY (2)
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Figure 3. Overall architecture of the R2D2 systemconsidering [96, 192, 384, 512] filters in the feature
extractor with 4 convolutional blocks for the CIFAR-FS dataset.

where X contains all NK feature extracted inputs from the training set of the consid-
ered task. A key insight in their paper is that the closed-form solution of Equation 2 can
be simplified using the Woodbury matrix identity yielding W = Λ(X,Y ) = XT (XXT +
λI)−1Y . This considerably reduces the complexity of the matrix calculations in the spe-
cial case of few-shot learning. Specifically,XXT is of size NK ×NK, in the case of an
N -wayK-shot task; thismatrix will, together with the regularization, be relatively easily
inverted. Normally, regression is not adequate for classification, but the authors noticed
that it still has considerable performance. Therefore, in order to transform the regres-
sion outputs (which are only effectively calculated when updating the meta-parameters
usingZ ′

T ) toworkwith the cross-entropy loss function, themeta-parameters (α, β) ∈ R2

serve as a scale and bias, respectively:

Ŷ ′ = αX ′ [XT (XXT + λI)−1Y
]
+ β (3)

4 Reproducibility

As a first step in the reproducibility, we reproduce the results of a baseline algorithm on
different datasets used in their paper. In this perspective, we first consider the MAML
algorithm from Finn, Abbeel, and Levine [5]. We use the official TensorFlow implemen-
tation of MAML (Finn [12]) to reproduce the baseline s̓ results. Then, we amend this
MAML implementation to reproduce the results on the new CIFAR-FS dataset proposed
by their paper (Bertinetto et al. [1]).
When reproducing the R2D2 algorithm, our first consideration is that the feature extrac-
tors in MAML and R2D2 are very different. MAML uses four convolutional blocks with
an organization of [32, 32, 32, 32] filters. Whereas, R2D2 s̓ four blocks employ a [96, 192,
384, 512] scheme, as shown in Figure 3. In other words, the feature extractor in R2D2 is
more complex hence is expected to yield better results (Mhaskar, Liao, and Poggio [13]).
In order to provide a meaningful comparison, we implement and evaluate both the sim-
ple andmore complex feature extractors for the R2D2 algorithm, denoted by R2D2* and
R2D2 respectively.
In order tomake a working reproduction of their paper we had tomake the following as-
sumptions. We first considered the aforementioned complex architecture and feature
extractor. In particular, for the feature extractor, we made assumptions on some of
the convolutional block options, which were not stated in their paper. We considered
a 3x3 convolution block with a s̓ameʼ padding and a stride of 1. For the 2x2 maximum
pooling, we use a stride of 2 and no padding. Second, concerning the ridge regression
base-learner, we opted for amultinomial regression that returns the class with themaxi-
mumvalue through one-hot encoding. Following the guidelines for the feature extractor
presented in Section 4.2 of their paper, we were not successful in reproducing the ex-
act number of features at the output of the feature extractor. In their paper, the overall
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numbers of features at the output of the extractor are 3584, 72576 and 8064 for Omniglot,
miniImageNet and CIFAR-FS, respectively. However, by implementing the feature ex-
tractor described in their paper, we obtain 3988, 51200 and 8192 respectively.
For comparison purposes, we use the same number of classes and shots during training
and testing, despite their paper using a higher number of classes during training (16 for
miniImageNet, 20 for CIFAR-FS) than during testing (5 forminiImageNet and CIFAR-FS).
Also, their paper uses a random number of shots during training. This is different from
the way most baselines are trained using the same number of shots per class during
training and testing (Finn [12], Nichol and Schulman [6], Vinyals et al. [7]). For compa-
rability, it is paramount to keep the training and testing procedures similar, if not the
same. In particular, as in their paper the 5-way results are exactly the same as those re-
ported in MAML (Finn, Abbeel, and Levine [5]), using the same number of classes and
shots during training and testing allows for a fair comparison.
Finally, a last assumption is made on the algorithms̓ stopping criterion. In their pa-
per, the stopping criterion is vaguely defined as ”the error on the meta-validation set does
not decrease meaningfully for 20,000 episodes”. Therefore, in line with the MAML training
procedure, we meta-train using up to 60,000 iterations. To update the meta-parameters,
in line with their paper, we use the Adam optimizer (Kingma and Ba [14]) with an ini-
tial learning rate of 0.005, dampened by 0.5 every 2,000 episodes. We use 15 examples
(”queries”) per class for evaluating the post-update meta-gradient. We use a meta batch-
size of 4 and 2 tasks for 1-shot and 5-shot training respectively. For MAML we use a
task-level learning rate of 0.01, with 5 gradient steps during training and 10 gradient
steps during testing.

5 Results and Contributions

The results of the different implemented architectures and algorithms for several datasets
are shown in Figures 4 and 5. More detailed results with 95% confidence intervals are
shown in Tables 1 and 2.
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Figure 4. N -wayK-shot classification accuracies on CIFAR-FS. Detailed results in Table 1.

Table 1. N -wayK-shot classification accuracies on CIFAR-FS with 95% confidence intervals.

Method MAML paper
Bertinetto et al. [1]

MAML
ours

R2D2*
ours

R2D2
ours

R2D2 paper
Bertinetto et al. [1]

5-way, 1-shot 58.9± 1.9% 56.8± 1.9% 57.0± 1.7% 62.7± 1.8% 65.3± 0.2%
5-way, 5-shot 71.5± 1.0% 70.8± 0.9% 68.9± 0.9% 75.1± 0.9% 79.4± 0.1%
2-way, 1-shot 82.8± 2.7% 83.1± 2.6% 82.4± 2.6% 87.3± 2.3% 83.4± 0.3%
2-way, 5-shot 88.3± 1.1% 88.5± 1.1% 88.0± 1.1% 90.7± 1.0% 91.1± 0.2%

5-way 1-shot 5-way 5-shot 2-way 1-shot 2-way 5-shot
40

50

60

70

80

90

100

ac
cu

ra
cy

 (%
)

48.7

63.1

74.9

84.4

47.6

62.3

78.8
82.6

48.1

63.1

77.3

85.4

51.7

66.2

79.5

87.3

51.5

68.8

76.7

86.8
MAML paper
MAML code
R2D2* ours
R2D2 ours
R2D2 paper

Figure 5. N -wayK-shot classification accuracies on miniImageNet. Detailed results in Table 2.

Table 2. N -wayK-shot classification accuracies on miniImageNet with 95% confidence intervals

Method MAML paper
Finn, Abbeel, and Levine [5]

MAML code
Finn [12]

R2D2*
ours

R2D2
ours

R2D2 paper
Bertinetto et al. [1]

5-way, 1-shot 48.7± 1.8% 47.6± 1.9% 48.1± 1.8% 51.7± 1.8% 51.5± 0.2%
5-way, 5-shot 63.1± 0.9% 62.3± 0.9% 63.1± 0.9% 66.2± 0.9% 68.8± 0.2%
2-way, 1-shot 74.9± 3.0% 78.8± 2.8% 77.3± 2.8% 79.5± 2.6% 76.7± 0.3%
2-way, 5-shot 84.4± 1.2% 82.6± 1.2% 85.4± 1.1% 87.3± 1.1% 86.8± 0.2%
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Our implementations weremade in Python 3.6.2 and TensorFlow 1.8.0 (Abadi et al. [15]).
The source code of all implementations is available5 online6. The simulations were run
on a machine with 24 Xeon e5 2680s at 2.5 GHz, 252GB RAM and a Titan X GPU with 12
GB RAM.

Although our results differ slightly from the original paper of Bertinetto et al. [1], R2D2
(with its more complex network architecture) performs better than the MAML method
for most simulations. It is not a surprise that, in all cases, with a more complex feature
extractor better results are obtained for the same algorithm (R2D2 vs R2D2*). Overall,
our study confirms that the R2D2 meta-learning method, with its corresponding com-
plex architecture, yields better performance than basic MAML (with its simpler archi-
tecture). The differences between reproduced results and reported values might be due
to our assumptions or the stopping criterion in the training. Also, as expected, the com-
plexity (N-ways) and the amount of data (K-shots) play a major role in the classification
accuracy. The accuracy drops when the number of ways increases and number of shots
decreases. An outlier worthmentioning is ourMAML simulation onminiImageNet: the
2-way 1-shot classification accuracy of 78.8± 2.8% is much better than the 74.9± 3.0%
reported in Finn, Abbeel, and Levine [5].
In summary, we have successfully reproduced the most important results presented
in Bertinetto et al. [1]. Although our reproduced results and their paper results differ
slightly, the general observations of the authors remain valid. Their meta-learning with
differentiable closed-form solvers yields state-of-the-art results and improves over an-
other state-of-the-art method. The assumptions made, however, could have been clar-
ified in their original paper. Indeed, these assumptions could be the source of the dis-
crepancy in the reproduction results. In this reproducibility work we did not focus on
the logistic regression based algorithm (LRD2) from their paper because the logistic re-
gression solver does not have a closed-form solution.
Overall, with this reproducibility project we make the following contributions:

• Algorithmic description of the R2D2 version of meta-learning with differentiable
closed-form solvers (Algorithm 3).

• Evaluation of theMAMLpipeline fromFinn [12] on two datasets: the existingmini-
ImageNet and new CIFAR-FS for different few-shot multi-class settings.

• Implementation of R2D2* in TensorFlow on the pipeline following Algorithm 3
with the original MAML feature extractor.

• Implementation of R2D2 in TensorFlow on the pipeline followingAlgorithm3with
the Figure 3 architecture as mimicked from in the original paper (Bertinetto et al.
[1]).

• Evaluation and insights in the reproducibility of Bertinetto et al. [1].

6 Conclusion

In this work we have presented a reproducibility analysis of the ICLR 2019 paper ”Meta-
learning with differentiable closed-form solvers” by Bertinetto et al. [1]. Some parameters
and training methodologies, which would be required for full reproducibility, such as
stride and padding of the convolutional filters, and a clear stopping criterion, are not
mentioned in the original paper or in its appendix (Bertinetto et al. [1]). However, by
making reasonable assumptions, we have been able to reproduce the most important
parts of the paper and to achieve similar results. Most importantlywe have succeeded in

5R2D2 and R2D2*: https://github.com/ArnoutDevos/r2d2
6MAML with CIFAR-FS: https://github.com/ArnoutDevos/maml-CIFAR-FS
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reproducing the increase in performance of the proposedmethod over some reproduced
baseline results, which supports the conclusions of the original paper. However, the
different neural network architectures should be taken into consideration when com-
paring results.
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