138 research outputs found

    Krüppel-like factor 5 is an important mediator for lipopolysaccharide-induced proinflammatory response in intestinal epithelial cells

    Get PDF
    Lipopolysaccharide (LPS) is a bacterially-derived endotoxin that elicits a strong proinflammatory response in intestinal epithelial cells. It is well established that LPS activates this response through NF-κB. In addition, LPS signals through the mitogen-activated protein kinase (MAPK) pathway. We previously demonstrated that the Krüppel-like factor 5 [KLF5; also known as intestine-enriched Krüppel-like factor (IKLF)] is activated by the MAPK. In the current study, we examined whether KLF5 mediates the signaling cascade elicited by LPS. Treatment of the intestinal epithelial cell line, IEC6, with LPS resulted in a dose- and time-dependent increase in KLF5 messenger RNA (mRNA) and protein levels. Concurrently, mRNA levels of the p50 and p65 subunits of NF-κB were increased by LPS treatment. Pretreatment with the MAPK inhibitor, U0126, or the LPS antagonist, polymyxin B, resulted in an attenuation of KLF5, p50 and p65 NF-κB subunit mRNA levels from LPS treatment. Importantly, suppression of KLF5 by small interfering RNA (siRNA) resulted in a reduction in p50 and p65 subunit mRNA levels and NF-κB DNA binding activity in response to LPS. LPS treatment also led to an increase in secretion of TNF-α and IL-6 from IEC6, both of which were reduced by siRNA inhibition of KLF5. In addition, intercellular adhesion molecule-1 (ICAM-1) levels were increased in LPS-treated IEC6 cells and this increase was associated with increased adhesion of Jurkat lymphocytes to IEC6. The induction of ICAM-1 expression and T cell adhesion to IEC6 by LPS were both abrogated by siRNA inhibition of KLF5. These results indicate that KLF5 is an important mediator for the proinflammatory response elicited by LPS in intestinal epithelial cells

    Development of a radio-detection method array for the observation of ultra-high energy neutrino induced showers

    Full text link
    The recent demonstration by the CODALEMA Collaboration of the ability of the radio-detection technique for the characterization of UHE cosmic-rays calls for the use of this powerful method for the observation of UHE neutrinos. For this purpose, an adaptation of the existing 21CM Array (China) is presently under achievment. In an exceptionally low electromagnetic noise level, 10160 log-periodic 50-200 MHz antennas sit along two high valleys, surrounded by mountain chains. This lay-out results in 30-60 km effective rock thicnesses for neutrino interactions with low incidence trajectories along the direction of two 4-6 km baselines. We will present first in-situ radio measurements demonstrating that this environment shows particularly favourable conditions for the observation of electromagnetic decay signals of taus originating from the interaction of 10^17-20 eV tau neutrinos.Comment: 4pages, 3 figures, Contribution to appear in the proceedings of ARENA 2008 conferenc

    Development of a radio detection array for the observation of showers induced by UHE Tau neutrinos

    Get PDF
    International audienceDevelopment of a radio detection array for the observation of showers induced by UHE Tau neutrino

    An active dipole for cosmic ray radiodetection with CODALEMA

    Get PDF
    A paraître dans NIM AInternational audienceThe CODALEMA experiment detects the electromagnetic pulses radiated during the development of Extensive Air Showers (EAS). Since 2005, in addition to spiral log-periodic antennas, ultra broad bandwidth active dipoles have been designed to detect the full electric pulse shape of these signals. A few performances of these new detectors are presented

    CODALEMA: a cosmic ray air shower radio detection experiment

    Get PDF
    International audienceThe CODALEMA experimental device currently detects and characterizes the radio contribution of cosmic ray air showers : arrival directions and electric field topologies of radio transient signals associated to cosmic rays are extracted from the antenna signals. The measured rate, about 1 event per day, corresponds to an energy threshold around 5.1016^{16}eV. These results allow to determine the perspectives offered by the present experimental design for radiodetection of Ultra High Energy Cosmic Rays at a larger scale

    Evidence for Radio Detection of Extensive Air Showers Induced by Ultra High Energy Cosmic Rays

    Full text link
    Firm evidence for a radio emission counterpart of cosmic ray air showers is presented. By the use of an antenna array set up in coincidence with ground particle detectors, we find a collection of events for which both time and arrival direction coincidences between particle and radio signals are observed. The counting rate corresponds to shower energies ≳5×1016\gtrsim 5\times 10^{16} eV. These results open overwhelming perspectives to complete existing detection methods for the observation of ultra high-energy cosmic rays.Comment: 4 pages, 4 figure

    The Giant Radio Array for Neutrino Detection

    Get PDF
    High-energy neutrino astronomy will probe the working of the most violent phenomena in the Universe. The Giant Radio Array for Neutrino Detection (GRAND) project consists of an array of ∼ 105 radio antennas deployed over ∼ 200 000 km2 in a mountainous site. It aims at detecting high-energy neutrinos via the measurement of air showers induced by the decay in the atmosphere of τ leptons produced by the interaction of cosmic neutrinos under the Earth surface. Our objective with GRAND is to reach a neutrino sensitivity of 5 × 10−11E−2 GeV−1 cm−2 s−1 sr−1 above 3 × 1016 eV. This sensitivity ensures the detection of cosmogenic neutrinos in the most pessimistic source models, and up to 100 events per year are expected for the standard models. GRAND would also probe the neutrino signals produced at the potential sources of UHECRs

    Butyrate Transcriptionally Enhances Peptide Transporter PepT1 Expression and Activity

    Get PDF
    Background: PepT1, an intestinal epithelial apical di/tripeptide transporter, is normally expressed in the small intestine and induced in colon during chronic inflammation. This study aimed at investigating PepT1 regulation by butyrate, a short-chain fatty acid produced by commensal bacteria and accumulated inside inflamed colonocyte. Results: We found that butyrate treatment of human intestinal epithelial Caco2-BBE cells increased human PepT1 (hPepT1) promoter activity in a dose- and time-dependent manner, with maximal activity observed in cells treated with 5 mM butyrate for 24 h. Under this condition, hPepT1 promoter activity, mRNA and protein expression levels were increased as assessed by luciferase assay, real-time RT-PCR and Western blot, respectively. hPepT1 transport activity was accordingly increased by,2.5-fold. Butyrate did not alter hPepT1 mRNA half-life indicating that butyrate acts at the transcriptional level. Molecular analyses revealed that Cdx2 is the most important transcription factor for butyrate-induced increase of hPepT1 expression and activity in Caco2-BBE cells. Butyrate-activated Cdx2 binding to hPepT1 promoter was confirmed by gel shift and chromatin immunoprecipitation. Moreover, Caco2-BBE cells overexpressing Cdx2 exhibited greater hPepT1 expression level than wild-type cells. Finally, treatment of mice with 5 mM butyrate added to drinking water for 24 h increased colonic PepT1 mRNA and protein expression levels, as well as enhanced PepT1 transport activity in colonic apical membranes vesicles

    Antenna development for astroparticle and radioastronomy experiments

    Get PDF
    International audienceAn active dipole antenna is in operation since five years at the Nançay radio Observatory (France) in the CODALEMA experiment. A new version of this active antenna has been developed, whose shape gave its name of "Butterfly" antenna. Compared to the previous version, this new antenna has been designed to be more efficient at low frequencies, which could permit the detection of atmospheric showers at large distances. Despite a size of only 2 m×1 m in each polarization, its sensitivity is excellent in the 30-80 MHz bandwidth. Three antennas in dual polarization were installed on the CODALEMA experiment, and four other have been recently installed on the Auger area in the scope of the AERA project. The main characteristics of the Butterfly antenna are detailed with an emphasis on its key features which make it a good candidate for the low frequency radioastronomy and the radio detection of transients induced by high energy cosmic rays
    • …
    corecore