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Antenna development for astroparticle and radioastronomy experiments

Didier Charrier, for the CODALEMA collaboration

Subatech, Ecole des Mines de Nantes - CNRS/IN2P3 - Université de Nantes, France

Abstract

An active dipole antenna is in operation since five years at the Nançay radio Observatory (France) in the CODALEMA experiment.

A new version of this active antenna has been developed, whose shape gave its name of “Butterfly” antenna. Compared to the

previous version, this new antenna has been designed to be more efficient at low frequencies, which could permit the detection of

atmospheric showers at large distances. Despite a size of only 2x1 meters in each polarization, its sensitivity is excellent in the

30-80 MHz bandwidth. Three antennas in dual polarization were installed on the CODALEMA experiment, and four other have

been recently installed on the Auger area in the scope of the AERA project. The main characteristics of the Butterfly antenna are

detailed with an emphasis on its key features which make it a good candidate for the low frequency radioastronomy and the radio

detection of transients induced by high energy cosmic rays.
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1. Introduction

Ultra high energy cosmic rays induce extensive air showers

(EAS) and also an associated transient electric field. This can be

detected in the so-called decametric range by an antenna whose

main characteristics are a good sensitivity, a wide bandwidth

(1-100 MHz), a high linearity to avoid intermodulation due to

radio frequency interference (RFI) and also a linear phase re-

sponse to maximize the amplitude of the received pulse. It has

been demonstrated [1] that the optimum frequency range is the

5-85 MHz band but to avoid short waves and FM band RFI,

the useful band is reduced to [25-85 MHz]. This is exactly the

same frequency range required for the low frequency radio as-

tronomy [2]. It means that if such an antenna sensitivity is high

enough, ideally 10 dB lower than the galactic background, it

should also work for the low frequency radio astronomy.

2. Requirements to develop a wide bandwidth antenna

To fulfill the wide band requirement, one can either design

a passive or an active antenna. Log-Periodic Dipole Antennas

(LPDA)[3] are passive antennas. They exhibit an almost con-

stant radiation resistance and an almost null antenna reactance

in their frequency ranges but their largest arms length are given

by the lowest frequency, and consequently, they are necessarily

huge for the 25-85MHz band. The 25 MHz frequency would

need a total arm length of 6 m. To avoid building such a huge

antenna, another possibility is to develop an active antenna. For

that case, a dedicated Low Noise Amplifier (LNA) is placed

close to the antenna radiator and consequently, a power match-

ing is not needed which is a major advantage since the value of

the LNA input impedance becomes a free parameter. It allows

to develop an electrically short antenna and to use a very simple

antenna radiator like a dipole. Indeed, the CODALEMA dipole

antenna [4] and the Butterfly Antenna (Fig. 1) are both active

fat dipole antennas with respectively a total arm length of 1.2m

and 2.2m.

Figure 1: The Butterfly antenna, a dual polarization active antenna using an

isosceles triangle as antenna radiator element, and a dual channel LNA located

in a plastic mechanical frame placed at the antenna feedpoint.

3. From the CODALEMA antenna to the Butterfly antenna

An array of 24 CODALEMA dipole antennas is running on

the field at Nançay for the detection of cosmic rays [5]. These

antennas are linear single polarized and their simulated effec-

tive height1 is maximized at 100MHz for the zenith elevation.

1In the literature the effective height is defined as the ratio of the magnitude

of the open-circuit voltage developed at the terminals of the antenna to the mag-

nitude of the electric-field strength in the direction of the antenna polarization.

It is not the definition that will be used here, see text.
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In this paper, the effective height is defined as the ratio of the

magnitude of the voltage developed at the LNA input to the

magnitude of the electric-field strength in the direction of the

antenna polarization. The main motivation of an upgrade to the

butterfly antenna is illustrated in Fig. 2. It represents the simu-

lated values of the effective height for both antennas performed

with the 4NEC2 software and calculated with MATLAB. For all

the simulations of this paper, antenna losses are set to zero and

the ground plane is assumed to be perfect. Note that the effec-

tive height has been improved for the 25-85 MHz band which

is almost free of RFI in France, Argentina and many countries.

The 25 MHz sensitivity is 15 dB higher which should allow

to enhance the detection of distant EAS. Moreover, RFI below

15 MHz are cut in order to avoid the LNA being overdriven by

them. Compared to the CODALEMA antenna, for the zenith

elevation, FM band frequencies are attenuated. The second mo-

tivation for the Butterfly antenna is the detection of electric field

with two horizontal linear polarizations, and the last one is the

possibility to calibrate the antenna with the galactic background

for the 30-80 MHz band.

Figure 2: Effective heights of the CODALEMA antenna and the Butterfly an-

tenna for the zenith elevation.

4. Active antenna needs a dedicated input impedance LNA

Considering Rrad and Xant the antenna radiation resistance

and antenna reactance, Rlna and Xlna the LNA input resistance

and reactance, G the antenna gain, and assuming a lossless an-

tenna, the magnitude of the antenna effective height H is:

|H( f )| = λ
√

G

πZ0

×
√

Rrad |Rlna + jXlna|
|Rlna + jXlna + Rrad + jXant|

(1)

with Z0 the intrinsic impedance and λ the wave length of the

received electric field. From 1, we deduce that the effective

height is maximized if Xlna is cancelling Xant, if Rrad is max-

imized and if Rlna is much greater than Rrad. We also deduce

that the effective height is flatter if Rrad variation is minimized.

The cancellation of Xant by Xlna, as illustrated in Fig. 4 is partly

obtained by adding a shunt inductance in parallel with the LNA

input. This cancellation is more easily obtained if Xant variation

is minimized. We also observe on Fig. 3 that, with this induc-

tance, Rlna becomes greater than Rrad on a wider bandwith. An-

other advantage of this inductance is to cut low frequencies RFI.

For a dipole antenna, the minimization of Rrad and Xant varia-

tions is obtained by increasing the diameter of the dipole [6],

thus becoming a fat dipole. Indeed, if we modelize to the first

order the antenna impedance by a serial L-C resonant circuit,

for a given resonance frequency depending on the overall an-

tenna length, the greater the antenna capacitance and the lower

the Q-factor. So the dipole antenna broadband capabilities are

increased by its capacitance value.

Figure 3: antenna radiation resistance

and LNA input resistance.

Figure 4: antenna reactance and LNA

input reactance.

5. Sizing the Butterfly antenna radiator

The shape of one arm of the Butterfly antenna (Fig. 1) is an

isosceles triangle made of an aluminium rod with a diameter of

6 mm. This simple shape is chosen since it is a tradeoff between

mechanical complexity, radiator weight, wind robustness, cost,

and the antenna capacitance. The shape could have been a rect-

angle finished by a triangle on the antenna terminal side, but

the advantage of a triangle is that only two bends are required

to build one arm. The important parameters are the length of

the outline which gives the resonance frequency and the fact

that the radiator shape is equivalent to a fat rod, increasing the

broadband capabilities [6]. Finally, with a triangle-shaped ra-

diator, seen from the terminal, the two arms are ended like a

point, it reduces the parasitic shunt capacitance [7]. This an-

tenna radiator can be seen as a slice of a cone whose broadband

characteristic would be better but quite impossible to built. In-

deed, a 4NEC2 simulation gives a capacitance of 12 pF when it

would have been twice more with a cone. Nevertheless, the ob-

tained capacitance is higher than the one it would have been for

a simple thin dipole (7 pF). A resonance frequency of roughly

50 MHz was chosen since it is the middle of the 20-80MHz

band. Consequently, at this frequency, the current distribution

along the antenna radiator is a half sine period. It means that

the half perimeter of one triangular arm must be one-quarter

wavelength, which gives 1.5 m. The Butterfly antenna can be

considered as a wire bow-tie antenna only for frequencies above

its first resonance frequency. It has been demonstrated [6] that

for this kind of antenna a flare angle ranging from 30◦ to 50◦ is

optimum to increase its broadband characteristics. If we choose

a flare angle of 45◦, with a perimeter of 3 m, we deduce that the

triangular arm has a base of 0.84 m and a height of 1 m. This

is a good compromise since it forms an antenna with an overall

length of roughly 2 m. But for mechanical constraint, in the

case of the Butterfly the base has been reduced to 0.75 m and

the height thus raises to 1.07 m.
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6. The Low Noise Amplifier

The LNA itself, named CODALAMP, is an ASIC [4] de-

signed at SUBATECH in 2004, using the AMS BiCMOS

0.8 µm technology. A specific two-channel LNA board using

two of these ASICs has been developed recently for the Butter-

fly antenna. The LNA board input impedance is equivalent to a

resistance of 300Ω in parallel with an input capacitance of 6 pF.

An external 1 µH inductance is added in parallel on the input.

The LNA board voltage gain, defined as the ratio of the output

voltage on a 50 Ω terminal load over the voltage on the input

impedance, is 26 dB; the bandwidth is more than 200 MHz;

the input 1 dB compression point is 25 mV peak to peak (p-p);

the output reflection coefficient is better than -20 dB in the 4-

210 MHz band; the gain drift with temperature is -0.026 dB/K

and the total consumption is 104 mA under a voltage between

6 and 15 V. The two analog outputs use N-type connectors and

the power supply is fed by the output signal wire.

7. Response of the Butterfly antenna to the galactic back-

ground

Figure 5: Measurement of the galactic drift over 4 days with the Butterfly an-

tenna. Y-axis is the frequency in MHz; X-axis is the time, same scale as Fig 6.

Using the galactic temperature as a calibrating signal is very

convenient to measure the active antenna sensitivity and to eval-

uate the active antenna modelization with respect to calcula-

tions. The antenna was placed on a test bench at the Nançay

radio observatory, in the East-West polarization. It consists in

acquiring continuously spectra with a spectrum analyser during

a few days in order to reveal the galactic drift. For this measure-

ment a sharp 24-82 MHz filter is placed on the front of the spec-

trum analyser to avoid its intermodulation. In Fig 5 there are

no traces of third order intermodulation above the short waves

band or below the FM band, where they should have appeared

if any: it means that the LNA linearity is large enough. More-

over in Fig. 6 which represents a slice of Fig. 5 for the 55 MHz

frequency, we observe a galactic drift of 2.8 dB. In Fig. 6 is also

Figure 6: Simulation(black line) versus measurement(cyan line) of the galactic

noise drift at 55MHz over 4 days. Y-axis is a relative noise density level in

decibel, X-axis is the UTC time.

plotted a simulation of the 55 MHz galactic drift performed by

the projection of the Butterfly antenna gain on a map of the sky

temperature generated with the LFmap code [8]. It gives a theo-

retical drift of 3 dB which is very close to the 2.8 dB measured.

This means that the galactic noise dominates the LNA noise at

55 MHz. In Fig. 6 we also observe that the shape of the mea-

sured galactic drift follows well the simulation. On the edges

of the bandwidth, we still measure a drift of 2.5 dB and 2.7 dB

at 30 and 80 MHz. Consequently, the Butterfly antenna could

be a good candidate as an element of a big array for the low

frequency radio astronomy [2].

Figure 7: Simulation(top dashed line) versus measurement(top full line) of the

absolute galactic noise level performed at the output of the LNA board. The

total simulated noise includes the measured LNA noise.

We also observe in Fig. 7 that the galactic response is quite

flat in the 25-85 MHz band; the variation of -6 dB between

33 and 88 MHz is due to the drop out of the galactic tempera-

ture with the frequency. The symmetry of the antenna is good,

since the two polarizations received almost the same level of

the galactic background. The Fig. 7 is a comparison between a

measurement of the galactic background realized at the Pierre

Auger observatory in Argentina and its calculation. This cal-

culation is performed with known data of the minimum galac-

tic temperature, the simulated antenna impedance and the mea-
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sured values of LNA S-parameters; it gives the absolute value

of the foreseen galactic noise without any adjustments. We ob-

serve an error between measurement and calculation lower than

1 dB from 25 to 200 MHz, meaning that the simulated value of

the antenna impedance and the MATLAB algorithm used to cal-

culate the galactic background are reliable. In Fig. 7, the LNA

noise is measured by disconnecting the antenna radiator, this

cannot thus be an exact value of the LNA noise since it depends

on the antenna impedance.

8. Butterfly antenna transient response

The modelization of the magnitude response is important, but

is not enough from the transient detection point of view. The

phase response modelization is also needed in order to deconvo-

lute the transient output signal from the vector antenna response

and then, calculate the shape and the magnitude of the received

electric field. This work is performed in the frequency domain

with the 4NEC2 software. The vector values of the electric field

generated by 4NEC2 are used to calculate the antenna vector ef-

fective height, then the input electric field is simply obtained by

a deconvolution. Rather than plotting the antenna directivity [6]

for many frequencies it is more clever to plot the active antenna

response to a Dirac for many polar and azimuth angles: this

represents a particular feature of the antenna transfer function

itself. The value of the maximum amplitude could be used to

define a kind of time domain directivity. This “time directiv-

ity” could be generalized to different kinds of received electric

pulses and then parameterized by raising and falling time of the

input pulse, which depend on the distance of the EAS. In Fig 8

is plotted the Butterfly antenna response to a Dirac input elec-

tric field for a few polar angles, from the zenith to 80◦, and for

the E-plane [6]. We observe that the shape is slightly elevation-

dependent and that the amplitude is changing by a factor 2 up

to 60◦. For the H-plane the amplitude changes only by a factor

2 from the zenith to 80◦.

Figure 8: The E-plane Butterfly antenna response to a Dirac electric field tran-

sient parametrized by the polar angle ranging from zenith to 80 ◦.

The Fig. 9, top, represents a pulse generated by a high energy

cosmic ray coming from the zenith, detected by a Butterfly an-

tenna and acquired by an autonomous, self-triggered station [9]

of the CODALEMA experiment. This pulse is numerically fil-

tered within a 20-87 MHz band to suppress RFI. We observe

that this signal is similar to the simulated active antenna re-

sponse to a Dirac pulse, see Fig. 8. The difference is due to

the fact that the received electric field is not exactly a Dirac

pulse. After a deconvolution of this pulse by the active antenna

response, we obtain, for the 20-87 MHz band, the electric field

received by the antenna as illustrated in Fig. 9, bottom. It can be

clearly concluded that the electric field generated by an EAS (at

least, for this example) is a short pulse. This is a very prelim-

inary work since this first result is based only on one event, so

the shape of induced electric field will have to be investigated

with more statistics and more accuracy, for example in order to

answer the question whether it is bipolar.

Figure 9: Top, an event acquired by the autonomous station [9]. Bottom, the

induced electric field generated from the deconvolution of the top curve by the

antenna vector transfer function.

9. Conclusion and outlook

Active antennas allow to develop both compact and sensi-

tive antennas for the 25-85 MHz bandwidth. With the Butter-

fly antenna, good agreement between measurements and sim-

ulations are obtained for the galactic background drift, for the

absolute galactic temperature and for the impulse antenna re-

sponse. The very good sensitivity of the Butterfly antenna to

the galaxy should allow calibrating it. The modelization of the

vector effective height allows knowing accurately the shape and

the value of the induced electric field. Due to its sensitivity

and compactness, the Butterfly antenna is as well a good candi-

date for low frequency radio astronomy [2]. A mass production

of Butterfly antennas will be performed before end of 2010, at

least for the extension of the CODALEMA experiment.
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