175 research outputs found

    The minimal automaton recognizing mN in a linear numeration system

    Get PDF
    We study the structure of automata accepting the greedy representations of N in a wide class of numeration systems. We describe the conditions under which such automata can have more than one strongly connected component and the form of any such additional components. Our characterization applies, in particular, to any automaton arising from a Bertrand numeration system. Furthermore, we show that for any automaton A arising from a system with a dominant root β > 1, there is a morphism mapping A onto the automaton arising from the Bertrand system associated with the number β. Under some mild assumptions, we also study the state complexity of the trim minimal automaton accepting the greedy representations of the multiples of m ≥ 2 for a wide class of linear numeration systems. As an example, the number of states of the trim minimal automaton accepting the greedy representations of mN in the Fibonacci system is exactly 2m2

    Comparison of climate change impacts on the recharge of two karst systems computing different modelling approaches

    Get PDF
    International audienceKarst systems constitute aquifers in which infiltration and groundwater flows are generally complex processes and are characterized by limited knowledge in terms of geometry and structure. Nonetheless, they often represent interesting groundwater resources, some of them being subjected to intensive exploitation and others non exploited due to their poor understanding. In the future, it is likely that climate change impact on water resources will increase the interest for such a kind of aquifers due to their strong infiltration and storage capacity, in a broad context of higher water scarcity.The Lez and the Lison karst systems in Southern and Eastern France, respectively, provide 2 examples of such systems of several km² under two contrasted climate conditions, the first one being heavily exploited. This study presents a comparative climate change assessment onboth karst systems. Nine climate scenarios corresponding to the Fourth assessment report of the IPCC (SRES A1B scenario), downscaled using weather-type methods by the CERFACS, have been applied to various recharge modelling approaches, as standard analytical solutions of recharge estimation and soil-water balance models. Results are compared and discussed in order to assess the influence on climate change impacts of i) the climate conditions(geographic location), ii) the groundwater exploitation and iii) the modelling approach

    Diffusion of gold nanoclusters on graphite

    Full text link
    We present a detailed molecular-dynamics study of the diffusion and coalescence of large (249-atom) gold clusters on graphite surfaces. The diffusivity of monoclusters is found to be comparable to that for single adatoms. Likewise, and even more important, cluster dimers are also found to diffuse at a rate which is comparable to that for adatoms and monoclusters. As a consequence, large islands formed by cluster aggregation are also expected to be mobile. Using kinetic Monte Carlo simulations, and assuming a proper scaling law for the dependence on size of the diffusivity of large clusters, we find that islands consisting of as many as 100 monoclusters should exhibit significant mobility. This result has profound implications for the morphology of cluster-assembled materials

    Fuel cell electrodes from organometallic Pt precursors: an easy atmospheric plasma approach

    Full text link
    An organometallic powder (platinum (II) acetylacetonate) is decomposed in the post-discharge of an atmospheric RF plasma torch to deposit Pt nanoparticles on carbon black supports. The resulting nanohybrid materials are characterized by FEG-SEM and XPS techniques to highlight their high content in Pt, their oxidation degree, and the dispersion of the Pt nanoparticles on the substrate. ICP-MS and electrochemical characterizations in a single fuel cell (cyclic voltammetry, dynamic polarization curves) are also performed on electrodes realized by treating the powder mixture overlaid on gas diffusion layers. The comparison of the catalytic activity and the Pt loading with commercially available electrodes shows the great potential of this simple innovative, fast, and robust deposition method

    Oocyte-somatic cells interactions, lessons from evolution

    Get PDF
    BACKGROUND: Despite the known importance of somatic cells for oocyte developmental competence acquisition, the overall mechanisms underlying the acquisition of full developmental competence are far from being understood, especially in non-mammalian species. The present work aimed at identifying key molecular signals from somatic origin that would be shared by vertebrates. RESULTS: Using a parallel transcriptomic analysis in 4 vertebrate species - a teleost fish, an amphibian, and two mammals - at similar key steps of developmental competence acquisition, we identified a large number of species-specific differentially expressed genes and a surprisingly high number of orthologous genes exhibiting similar expression profiles in the 3 tetrapods and in the 4 vertebrates. Among the evolutionary conserved players participating in developmental competence acquisition are genes involved in key processes such as cellular energy metabolism, cell-to-cell communications, and meiosis control. In addition, we report many novel molecular actors from somatic origin that have never been studied in the vertebrate ovary. Interestingly, a significant number of these new players actively participate in Drosophila oogenesis. CONCLUSIONS: Our study provides a comprehensive overview of evolutionary-conserved mechanisms from somatic origin participating in oocyte developmental competence acquisition in 4 vertebrates. Together our results indicate that despite major differences in ovarian follicular structure, some of the key players from somatic origin involved in oocyte developmental competence acquisition would be shared, not only by vertebrates, but also by metazoans. The conservation of these mechanisms during vertebrate evolution further emphasizes the important contribution of the somatic compartment to oocyte quality and paves the way for future investigations aiming at better understanding what makes a good egg
    corecore