3,814 research outputs found

    Recent trends in US patent grants and issues to be considered

    Get PDF
    The life sciences have changed radically since the Convention on Biological Diversity first opened for signatures in 1992. Traditional organism-based approaches to discovery and use of genetic resources have been supplanted by molecular approaches. Biodiversity prospecting is more likely to be a programmatic bioinformatics activity rather than an activity conducted by field scientists. Access to genetic resources is no longer centered on a hunt for novel species. Rather, the hunt is for novel genes and metabolic pathways that can be cloned into well-understood expression systems and readily scaled-up for industrial production. Information about contemporary research, development, and manufacturing practices needs to be addressed, especially when those genes do not need to be associated with their native host at the time of discovery. Information about the research organizations participating in all phases of the discovery and development process also needs to be considered, especially when it involves partnerships between academic and industrial organizations. 

We present a high-level view of recent trends in the issuance of US patent grants to commercial and non-commercial research organizations, and introduce a technology that is already in place which can be applied to monitoring the use of genetic materials by various stakeholders in an open and transparent manner, as intended under the International Regime for Access and Benefit Sharing (ABS).
&#xa

    A review of the genus Agapetus Curtis (Trichoptera: Glossosomatidae) in eastern and central North America, with description of 12 new species

    Get PDF
    Twenty-nine species of caddisflies in the genus Agapetus Curtis in eastern and central North America are reviewed. Twelve are described as new species: Agapetus aphallus (known only from females); Agapetus baueri, Agapetus flinti, Agapetus harrisi, Agapetus hesperus, Agapetus ibis, Agapetus kirchneri, Agapetus meridionalis, Agapetus pegram, Agapetus ruiteri, Agapetus stylifer, and Agapetus tricornutus. Agapetus rossi Denning 1941 is recognized as a junior subjective synonym of Agapetus walkeri (Betten and Mosely 1940), new synonym. A key to males is provided, and species’ distributions are mapped

    Understanding Collaboration:Introducing the Collaborative Governance Case Databank

    Get PDF
    Studying collaborative governance has become a booming business. However, the empirical literature still struggles to produce robust generalizations and cumulative knowledge that link contextual, situational and institutional design factors to processes and outcomes. We still have not mustered the broad and deep evidence base that will really help us sort fact from fiction and identify more and less productive approaches to collaboration. The current empirical evidence in the study of collaborative governance consists chiefly of small-N case studies or large-N surveys. The challenge is to move from case-based, mid-range theory building to more largeN-driven systematic theory-testing, while also retaining the rich contextual and process insights that only small-N studies tend to yield. This article, and the articles in the accompanying special issue, introduces an attempt to provide this middle ground– the Collaborative Governance Case Database. The database has been developed to serve as a free common pool resource for researchers to systematically collect and compare high-quality collaborative governance case studies. This article is an introduction to the database, exploring its design, opportunities and limitations. This article is also an invitation; inviting all researchers to freely use the cases in the database for their own research interest and to help strengthening the database by adding new cases they are eager to share with colleagues

    Reactivity and Sintering Kinetics of Au/TiO2(110) Model Catalysts: Particle Size Effects

    Get PDF
    We review here our studies of the reactivity and sintering kinetics of model catalysts consisting of gold nanoparticles dispersed on TiO2(110). First, the nucleation and growth of vapor-deposited gold on this surface was experimentally examined using x-ray photoelectron spectroscopy and low energy ion scattering. Gold initially grows as two-dimensional islands up to a critical coverage, hcr, after which 3D gold nanoparticles grow. The results at different temperatures are fitted well with a kinetic model, which includes various energetic parameters for Au adatom migration. Oxygen was dosed onto the resulting gold nanoparticles using a hot filament technique. The desorption energy of Oa was examined using temperature programmed desorption (TPD). The Oa is bonded ~40% more strongly to smaller (thinner) Au islands. Gaseous CO reacts rapidly with this Oa to make CO2, probably via adsorbed CO. The reactivity of Oa with CO increases with increasing particle size, as expected based on Brønsted relations. Propene adsorption leads to TPD peaks for three different molecularly adsorbed states on Au/TiO2(110), corresponding to propene adsorbed on gold islands, to Ti sites on the substrate, and to the perimeter of gold islands, with adsorption energies of 40, 52 and 73 kJ/mol, respectively. Thermal sintering of the gold nanoparticles was explored using temperature-programmed low-energy ion scattering. These sintering rates for a range of Au loadings at temperatures from 200 to 700 K were well fitted by a theoretical model which takes into consideration the dramatic effect of particle size on metal chemical potential using a modified bond additivity model. When extrapolated to simulate isothermal sintering at 700 K for 1 year, the resulting particle size distribution becomes very narrow. These results question claims that the shape of particle size distributions reveal their sintering mechanisms. They also suggest why the growth of colloidal nanoparticles in liquid solutions can result in very narrow particle size distributions

    NamesforLife Semantic Resolution Services for the Life Sciences

    Get PDF
    A major challenge in bioinformatics, life sciences, and medicine is using correct and informative names. While this sounds simple enough, many different naming conventions exist in the life sciences and medicine that may be either complementary or competitive with other naming conventions. For a variety of reasons, proper names are not always used, leading to an accumulated semantic ambiguity that readers of the literature and end users of databases are left to resolve on their own. This ambiguity is a growing problem and the biocuration community is aware of its consequences. 

To assist those confronted with ambiguous names (which not only includes researchers but clinicians, manufacturers, patent attorneys, and others who use biological data in their routine work), we developed a generalizable semantic model that represents names, concepts, and exemplars (representations of biological entities) as distinct objects. By identifying each object with a Digital Object Identifier (DOI) it becomes possible to place forward-pointing links in the published literature, in databases, and vector graphics that can be used as part of a mechanism for resolving ambiguities, thereby “future proofing” a nomenclature or terminology. A full implementation of the N4L model for the _Bacteria_ and _Archaea_ was released in April, 2010. The system is professionally curated and represents a Tier III resource in Parkhill’s view of bioinformatic services. A variety of tools and web services have been developed for readers, publishers, and others (N4L Guide, N4L Autotagger, N4L Semantic Search, N4L Taxonomic Abstracts) and we are incorporating other taxonomies into the N4L data model, as well as adding additional phenotypic, genotypic, and genomic information to the existing exemplars to add greater value to end users

    High density LHRF experiments in Alcator C-Mod and implications for reactor scale devices

    Get PDF
    Parametric decay instabilities (PDI) appear to be an ubiquitous feature of lower hybrid current drive (LHCD) experiments at high density. In density ramp experiments in Alcator C-Mod and other machines the onset of PDI activity has been well correlated with a decrease in current drive efficiency and production of fast electron bremsstrahlung. However whether PDI is the primary cause of the 'density limit', and if so by exactly what mechanism (beyond the obvious one of pump depletion) has not been clearly established. In order to further understand the connection, the frequency spectrum of PDI activity occurring during Alcator C-Mod LHCD experiments has been explored in detail by means of a number of RF probes distributed around the periphery of the C-Mod tokamak including a probe imbedded in the inner wall. The results show that (i) the excited spectra consists mainly of a few discrete ion cyclotron (IC) quasi-modes, which have higher growth than the ion sound branch; (ii) PDI activity can begin either at the inner or outer wall, depending on magnetic configuration; (iii) the frequencies of the IC quasi-modes correspond to the magnetic field strength close to the low-field side (LFS) or high-field side separatrix; and (iv) although PDI activity may initiate near the inner separatrix, the loss in fast electron bremsstrahlung is best correlated with the appearance of IC quasi-modes characteristic of the magnetic field strength near the LFS separatrix. These data, supported by growth rate calculations, point to the importance of the LFS scrape-off layer (SOL) density in determining PDI onset and degradation in current drive efficiency. By minimizing the SOL density it is possible to extend the core density regime over which PDI can be avoided, thus potentially maximizing the effectiveness of LHCD at high density. Increased current drive efficiency at high density has been achieved in FTU and EAST through lithium coating and special fuelling methods, and in recent C-Mod experiments by operating at higher plasma current. Another approach would be to locate the launcher in the inner wall with double null operation. This would reduce the SOL density by an order of magnitude or more and greatly mitigate the effects of PDI as well as other parasitic losses.United States. Department of Energy (DE-FC02-99ER54512
    • …
    corecore