4,211 research outputs found

    Magic wavelengths for the np-ns transitions in alkali-metal atoms

    Full text link
    Extensive calculations of the electric-dipole matrix elements in alkali-metal atoms are conducted using the relativistic all-order method. This approach is a linearized version of the coupled-cluster method, which sums infinite sets of many-body perturbation theory terms. All allowed transitions between the lowest ns, np_1/2, np_3/2 states and a large number of excited states are considered in these calculations and their accuracy is evaluated. The resulting electric-dipole matrix elements are used for the high-precision calculation of frequency-dependent polarizabilities of the excited states of alkali-metal atoms. We find magic wavelengths in alkali-metal atoms for which the ns and np_1/2 and np_3/2 atomic levels have the same ac Stark shifts, which facilitates state-insensitive optical cooling and trapping.Comment: 12 pages, 8 figure

    Bird Movement Predicts Buggy Creek Virus Infection in Insect Vectors

    Get PDF
    Predicting the spatial foci of zoonotic diseases is a major challenge for epidemiologists and disease ecologists. Migratory birds are often thought to be responsible for introducing some aviozoonotic pathogens such as West Nile and avian influenza viruses to a local area, but most information on how bird movement correlates with virus prevalence is anecdotal or indirect. We report that the prevalence of Buggy Creek virus (BCRV) infection in cimicid swallow bugs (Oeciacus vicarius), the principal invertebrate vector for this virus, was directly associated with the likelihood of movement by cliff swallows (Petrochelidon pyrrhonota), an amplifying host for the virus, between nesting colonies. The prevalence of BCRV in bugs was also directly correlated with the number of swallows immigrating into a site. Birds that move into a site are often transient individuals that may have more often encountered virus elsewhere. These results indicate that the magnitude and direction of daily bird movement in a local area can accurately predict transmission foci for this virus and provide rare quantitative evidence that birds can play a critical role in the dispersal of certain vector-borne viruses

    Bird Movement Predicts Buggy Creek Virus Infection in Insect Vectors

    Get PDF
    Predicting the spatial foci of zoonotic diseases is a major challenge for epidemiologists and disease ecologists. Migratory birds are often thought to be responsible for introducing some aviozoonotic pathogens such as West Nile and avian influenza viruses to a local area, but most information on how bird movement correlates with virus prevalence is anecdotal or indirect. We report that the prevalence of Buggy Creek virus (BCRV) infection in cimicid swallow bugs (Oeciacus vicarius), the principal invertebrate vector for this virus, was directly associated with the likelihood of movement by cliff swallows (Petrochelidon pyrrhonota), an amplifying host for the virus, between nesting colonies. The prevalence of BCRV in bugs was also directly correlated with the number of swallows immigrating into a site. Birds that move into a site are often transient individuals that may have more often encountered virus elsewhere. These results indicate that the magnitude and direction of daily bird movement in a local area can accurately predict transmission foci for this virus and provide rare quantitative evidence that birds can play a critical role in the dispersal of certain vector-borne viruses

    Ecological Correlates of Buggy Creek Virus Infection in \u3ci\u3eOeciacus vicarius\u3c/i\u3e, Southwestern Nebraska, 2004

    Get PDF
    Buggy Creek virus (family Togaviridae, genus Alphavirus, BCRV) is an alphavirus within the western equine encephalitis virus complex whose primary vector is the swallow bug, Oeciacus vicarius Horvath (Hemiptera: Cimicidae), an ectoparasite of the colonially nesting cliff swallow, Petrochelidon pyrrhonota, that is also a frequent host for the virus.We investigated ecological correlates of BCRV infection in 100-bug pools at 14 different swallow colony sites in southwestern Nebraska from summer 2004, by using plaque assay on Vero cells to identify cytopathic virus and reverse transcription-polymerase chain reaction to identify noncytopathic viral RNA. We found 26.7% of swallow bug pools positive for BCRV, with 15.6% showing cytopathic (“infectious”) virus and 11.0% noncytopathic (“noninfectious”) viral RNA. The prevalence of cytopathic BCRV increased with cliff swallow colony size in the current year; the percentage of noncytopathic samples at a site did not vary with colony size in the current year but increased with the previous year\u27s colony size at a site. Active colony sites (those used by swallows) had higher percentages of cytopathic BCRV in bug pools than at inactive colony sites, but the reverse held for noncytopathic viral RNA. Nests that were occupied by birds at some time in the season had more pools with cytopathic BCRV than did inactive nests. Colonies used by birds for the first or second time had less virus in bugs than did sites that had had a longer history of bird use. The percentage of pools with BCRV was affected by whether bugs were clustering at nest entrances or distributed elsewhere on a nest. The prevalence of cytopathic samples decreased at inactive colony sites and increased at active sites over the course of the summer, whereas the reverse pattern held for noncytopathic samples. Noncytopathic bug pools seem to reflect infection patterns from a previous year. The results suggest that the birds play an important role in amplification of the virus and that the spatial foci of BCRV occurrence can be predicted based on characteristics of cliff swallow colonies and the cimicid bugs that are associated with them

    Ecological Correlates of Buggy Creek Virus Infection in \u3ci\u3eOeciacus vicarius\u3c/i\u3e, Southwestern Nebraska, 2004

    Get PDF
    Buggy Creek virus (family Togaviridae, genus Alphavirus, BCRV) is an alphavirus within the western equine encephalitis virus complex whose primary vector is the swallow bug, Oeciacus vicarius Horvath (Hemiptera: Cimicidae), an ectoparasite of the colonially nesting cliff swallow, Petrochelidon pyrrhonota, that is also a frequent host for the virus.We investigated ecological correlates of BCRV infection in 100-bug pools at 14 different swallow colony sites in southwestern Nebraska from summer 2004, by using plaque assay on Vero cells to identify cytopathic virus and reverse transcription-polymerase chain reaction to identify noncytopathic viral RNA. We found 26.7% of swallow bug pools positive for BCRV, with 15.6% showing cytopathic (“infectious”) virus and 11.0% noncytopathic (“noninfectious”) viral RNA. The prevalence of cytopathic BCRV increased with cliff swallow colony size in the current year; the percentage of noncytopathic samples at a site did not vary with colony size in the current year but increased with the previous year\u27s colony size at a site. Active colony sites (those used by swallows) had higher percentages of cytopathic BCRV in bug pools than at inactive colony sites, but the reverse held for noncytopathic viral RNA. Nests that were occupied by birds at some time in the season had more pools with cytopathic BCRV than did inactive nests. Colonies used by birds for the first or second time had less virus in bugs than did sites that had had a longer history of bird use. The percentage of pools with BCRV was affected by whether bugs were clustering at nest entrances or distributed elsewhere on a nest. The prevalence of cytopathic samples decreased at inactive colony sites and increased at active sites over the course of the summer, whereas the reverse pattern held for noncytopathic samples. Noncytopathic bug pools seem to reflect infection patterns from a previous year. The results suggest that the birds play an important role in amplification of the virus and that the spatial foci of BCRV occurrence can be predicted based on characteristics of cliff swallow colonies and the cimicid bugs that are associated with them

    Development of rotorcraft interior noise control concepts. Phase 3: Development of noise control concepts

    Get PDF
    The goal of this research is the understanding of helicopter internal noise mechanisms and the development, design, and testing of noise control concepts which will produce significant reductions in the acoustic environment to which passengers are exposed. The Phase 3 effort involved the identification and evaluation of current and advanced treatment concepts, including isolation of structure-borne paths. In addition, a plan was devised for the full-scale evaluation of an isolation concept. Specific objectives were as follows: (1) identification and characterization of various noise control concepts; (2) implementation of noise control concepts within the S-76 SEA (statistical energy analysis) model; (3) definition and evaluation of a preliminary acoustic isolation design to reduce structure-borne transmission of acoustic frequency main gearbox gear clash vibrations into the airframe; (4) formulation of a plan for the full-scale validation of the isolation concept; and (5) prediction of the cabin noise environment with various noise control concepts installed

    History of the Innovation of Damage Control for Management of Trauma Patients: 1902-2016

    Get PDF
    Objective: To review the history of the innovation of damage control (DC) for management of trauma patients. Background: DC is an important development in trauma care that provides a valuable case study in surgical innovation. Methods: We searched bibliographic databases (1950-2015), conference abstracts (2009-2013), Web sites, textbooks, and bibliographies for articles relating to trauma DC. The innovation of DC was then classified according to the Innovation, Development, Exploration, Assessment, and Long-term study model of surgical innovation. Results: The innovation\u27\u27 of DC originated from the use of therapeutic liver packing, a practice that had previously been abandoned after World War II because of adverse events. It then developed\u27\u27 into abbreviated laparotomy using rapid conservative operative techniques.\u27\u27 Subsequent exploration\u27\u27 resulted in the application of DC to increasingly complex abdominal injuries and thoracic, peripheral vascular, and orthopedic injuries. Increasing use of DC laparotomy was followed by growing reports of postinjury abdominal compartment syndrome and prophylactic use of the open abdomen to prevent intra-abdominal hypertension after DC laparotomy. By the year 2000, DC surgery had been widely adopted and was recommended for use in surgical journals, textbooks, and teaching courses ( assessment\u27\u27 stage of innovation). Long-term study\u27\u27 of DC is raising questions about whether the procedure should be used more selectively in the context of improving resuscitation practices. Conclusions: The history of the innovation of DC illustrates how a previously abandoned surgical technique was adapted and readopted in response to an increased understanding of trauma patient physiology and changing injury patterns and trauma resuscitation practices

    The Environment of Warm-Season Elevated Thunderstorms Associated with Heavy Rainfall Over the Central United States

    Get PDF
    Twenty-one warm-season heavy-rainfall events in the central United States produced by mesoscale convective systems (MCSs) that developed above and north of a surface boundary are examined to define the environmental conditions and physical processes associated with these phenomena. Storm-relative composites of numerous kinematic and thermodynamic fields are computed by centering on the heavy-rain-producing region of the parent elevated MCS. Results reveal that the heavy-rain region of elevated MCSs is located on average about 160 km north of a quasi-stationary frontal zone, in a region of low-level moisture convergence that is elongated westward on the cool side of the boundary. The MCS is located within the left-exit region of a south-southwesterly lowlevel jet (LLJ) and the right-entrance region of an upper-level jet positioned well north of the MCS site. The LLJ is directed toward a divergence maximum at 250 hPa that is coincident with the MCS site. Near-surface winds are light and from the southeast within a boundary layer that is statically stable and cool. Winds veer considerably with height (about 1408) from 850 to 250 hPa, a layer associated with warm-air advection. The MCS is located in a maximum of positive equivalent potential temperature ue advection, moisture convergence, and positive thermal advection at 850 hPa. Composite fields at 500 hPa show that the MCS forms in a region of weak anticyclonic curvature in the height field with marginal positive vorticity advection. Even though surfacebased stability fields indicate stable low-level air, there is a layer of convectively unstable air with maximumu e CAPE values of more than 1000 J kg21 in the vicinity of the MCS site and higher values upstream. Maximumu e convective inhibition (CIN) values over the MCS centroid site are small (less than 40 J kg21) while to the south convection is limited by large values of CIN (greater than 60 J kg21). Surface-to-500-hPa composite average relative humidity values are about 70%, and composite precipitable water values average about 3.18 cm (1.25 in.). The representativeness of the composite analysis is also examined. Last, a schematic conceptual model based upon the composite fields is presented that depicts the typical environment favorable for the development of elevated thunderstorms that lead to heavy rainfall

    Isolation by Distance Explains Genetic Structure of Buggy Creek Virus, a Bird-Associated Arbovirus

    Get PDF
    Many of the arthropod-borne viruses (arboviruses) show extensive genetic variability and are widely distributed over large geographic areas. Understanding how virus genetic structure varies in space may yield insight into how these pathogens are adapted to and dispersed by different hosts or vectors, the relative importance of mutation, drift, or selection in generating genetic variability, and where and when epidemics or epizootics are most likely to occur. However, because most arboviruses tend to be sampled opportunistically and often cannot be isolated in large numbers at a given locale, surprisingly little is known about their spatial genetic structure on the local scale at which host/vector/virus interactions typically occur. Here, we examine fine-scale spatial structure of two sympatric lineages of Buggy Creek virus (BCRV, Togaviridae), an alphavirus transmitted by the ectoparasitic swallow bug (Oeciacus vicarius) to colonially nesting cliff swallows (Petrochelidon pyrrhonota) and invasive house sparrows (Passer domesticus) in North America. Data from 377 BCRV isolates at cliff swallow colony sites in western Nebraska showed that both virus lineages were geographically structured. Most haplotypes were detected at a single colony or were shared among nearby colonies, and pair-wise genetic distance increased significantly with geographic distance between colony sites. Genetic structure of both lineages is consistent with isolation by distance. Sites with the most genetically distinct BCRV isolates were occupied by large numbers of house sparrows, suggesting that concentrations of invasive sparrows may represent foci for evolutionary change in BCRV. Our results show that bird-associated arboviruses can show genetic substructure over short geographic distances
    • …
    corecore