4,020 research outputs found

    Reactions of feldspar surfaces with acidic solutions

    Get PDF
    The material of this bulletin is largely taken from the Ph. D. thesis by V.E. Nash... University of Missouri, 1955. The work was part of Department of Soils Research Project No. 6, entitled 'Heavy Clays'--Page [3].Includes bibliographical references (pages 35-36).Includes bibliographical references (pages 35-36)

    Reactions of feldspar surfaces with salt solutions

    Get PDF
    Most of the experimental material of this and the preceding Research Bulletin is taken from the Ph. D. Thesis of Victor Nash, University of Missouri, June 1955... The work was part of Department of Soils Research Project No. 6, entitled, 'Heavy Clays'--Page [2].Includes bibliographical references (page 36).Includes bibliographical references (page 36)

    Topological Phase Transitions and Holonomies in the Dimer Model

    Get PDF
    We demonstrate that the classical dimer model defined on a toroidal hexagonal lattice acquires holonomy phases in the thermodynamic limit. When all activities are equal the lattice sizes must be considered mod 6 in which case the finite size corrections to the bulk partition function correspond to a massless Dirac Fermion in the presence of a flat connection with nontrivial holonomy. For general bond activities we find that the phase transition in this model is a topological one, where the torus degenerates and its modular parameter becomes real at the critical temperature. We argue that these features are generic to bipartite dimer models and we present a more general lattice whose continuum partition function is that of a massive Dirac Fermion.Comment: 7 pages, 4 figures. Minor corrections with additional figure

    Modular Invariance of Finite Size Corrections and a Vortex Critical Phase

    Get PDF
    We analyze a continuous spin Gaussian model on a toroidal triangular lattice with periods L0L_0 and L1L_1 where the spins carry a representation of the fundamental group of the torus labeled by phases u0u_0 and u1u_1. We find the {\it exact finite size and lattice corrections}, to the partition function ZZ, for arbitrary mass mm and phases uiu_i. Summing Z1/2Z^{-1/2} over phases gives the corresponding result for the Ising model. The limits m0m\rightarrow0 and ui0u_i\rightarrow0 do not commute. With m=0m=0 the model exhibits a {\it vortex critical phase} when at least one of the uiu_i is non-zero. In the continuum or scaling limit, for arbitrary mm, the finite size corrections to lnZ-\ln Z are {\it modular invariant} and for the critical phase are given by elliptic theta functions. In the cylinder limit L1L_1\rightarrow\infty the ``cylinder charge'' c(u0,m2L02)c(u_0,m^2L_0^2) is a non-monotonic function of mm that ranges from 2(1+6u0(u01))2(1+6u_0(u_0-1)) for m=0m=0 to zero for mm\rightarrow\infty.Comment: 12 pages of Plain TeX with two postscript figure insertions called torusfg1.ps and torusfg2.ps which can be obtained upon request from [email protected]

    Weak Lensing with SDSS Commissioning Data: The Galaxy-Mass Correlation Function To 1/h Mpc

    Full text link
    (abridged) We present measurements of galaxy-galaxy lensing from early commissioning imaging data from the Sloan Digital Sky Survey (SDSS). We measure a mean tangential shear around a stacked sample of foreground galaxies in three bandpasses out to angular radii of 600'', detecting the shear signal at very high statistical significance. The shear profile is well described by a power-law. A variety of rigorous tests demonstrate the reality of the gravitational lensing signal and confirm the uncertainty estimates. We interpret our results by modeling the mass distributions of the foreground galaxies as approximately isothermal spheres characterized by a velocity dispersion and a truncation radius. The velocity dispersion is constrained to be 150-190 km/s at 95% confidence (145-195 km/s including systematic uncertainties), consistent with previous determinations but with smaller error bars. Our detection of shear at large angular radii sets a 95% confidence lower limit s>140s>140^{\prime\prime}, corresponding to a physical radius of 260h1260h^{-1} kpc, implying that galaxy halos extend to very large radii. However, it is likely that this is being biased high by diffuse matter in the halos of groups and clusters. We also present a preliminary determination of the galaxy-mass correlation function finding a correlation length similar to the galaxy autocorrelation function and consistency with a low matter density universe with modest bias. The full SDSS will cover an area 44 times larger and provide spectroscopic redshifts for the foreground galaxies, making it possible to greatly improve the precision of these constraints, measure additional parameters such as halo shape, and measure the properties of dark matter halos separately for many different classes of galaxies.Comment: 28 pages, 11 figures, submitted to A
    corecore