367 research outputs found

    Protection from reperfusion injury in the isolated rat heart by postischaemic deferoxamine and osypurinol administration

    Get PDF
    The Langendorff isolated rat heart preparation was used to determine the effect of oxypurinol, a xanthine oxidase inhibitor, and deferoxamine, an iron binding agent, on the extent of myocardial reperfusion injury after 60 minutes of ischaemia. Thirty rats were divided into three groups of 10. and an isolated heart preparation made from each rat. The isolated hearts were perfused for 15 minutes with a modified Krebs-Henseleit perfusate solution to permit stabilisation of the preparation. Each heart was then subjected to 60 minutes of total ischaemia at 37°C followed by 60 minutes of reperfusion with either saline treated perfusate, oxypurinol treated perfusate (1.3 mmol/litre), or deferoxamine treated perfusate (0.61 mmol/litre). Reperfusion injury was assessed by the total amount of creatine phosphokinase released into the perfusate, by changes in myocardial vascular resistance, and by morphological examination. The saline treated group released significantly more creatine phosphokinase into the perfusate than either the oxypurinol treated group (p\u3c0.05) or the deferoxamine treated group (p \u3c 0.05). The mean vascular resistance increased for all groups during the 60 minutes of reperfusion compared with that just before ischaemia but was significantly greater in the saline treated group than in the drug treated groups (p \u3c 0.01). Ultrastructural examination of a randomly selected heart from each group after 60 minutes of reperfusion showed pronounced attenuation of mitochondria1 and endoplasmic reticulum swelling, increased maintenance of membrane integrity, and diminished separation of myofilaments in the oxypurinol treated and deferoxamine treated hearts. The mean cross sectional area of mitochondria after 60 minutes of reperfusion was significantly greater in the saline treated group than in the drug treated groups. Thus both oxypurinol and deferoxamine, given after 60 minutes of ischaemia at the onset of reperfusion, can protect the isolated rat heart from reperfusion injury

    A Computer Simulation of Progesterone and Cox2 Inhibitor Treatment for Preterm Labor

    Get PDF
    Background: Sufficient information from in vitro and in vivo studies has become available to permit computer modeling of the processes that occur in the myometrium during labor. This development allows the in silico investigation of pathological mechanisms and the trialing of potential treatments. Methods/Results: Based on the human literature, we developed a computer model of the immune-endocrine environment of the myometrial cell. The interactions between molecules are represented by differential equations. The model is designed to simulate the estrogen and progesterone receptor changes during pregnancy and particularly the changes in the progesterone receptor (PR) isoforms A and B that are thought to mediate functional progesterone withdrawal in the human at labor. Parturition is represented by an increase in the PRA to PRB ratio to levels seen in women in labor. Infection is shown by inducing inflammation in the system by increasing phospho-IkB kinase concentration (IKK) levels; which lead to increased NF-kappa B activation, causing an increase in the PRA/PRB ratio. We examined the effects of progesterone or cyclooxygenase 2 (Cox2) inhibitor treatments on the PRA/PRB ratio in silico. The model predicted that high doses of progesterone and Cox2 inhibition would be effective in preventing an NF-kappa B-induced PRA/PRB ratio increase to the levels found during labor. Conclusions: Our data illustrate the use of dynamic biological computer simulations to test the effectiveness of therapeutic interventions. This may allow the early rejection of ineffective therapies prior to expensive field trials

    Pretreatment with Pancaspase Inhibitor (Z-VAD-FMK) Delays but Does Not Prevent Intraperitoneal Heat-Killed Group B Streptococcus-Induced Preterm Delivery in a Pregnant Mouse Model

    Get PDF
    Caspases and apoptosis are thought to play a role in infection-associated preterm-delivery. We have shown that in vitro treatment with pancaspase inhibitor Z-VAD-FMK protects trophoblasts from microbial antigen-induced apoptosis. Objective. To examine whether in vivo administration of Z-VAD-FMK would prevent infection-induced preterm-delivery. Methods. We injected 14.5 day-pregnant-mice with heat-killed group B streptococcus (HK-GBS). Apoptosis within placentas and membranes was assessed by TUNEL staining. Calpain expression and caspase-3 activation were assessed by immunohistochemistry. Preterm-delivery was defined as expulsion of a fetus within 48 hours after injection. Results. Intrauterine (i.u.) or intraperitoneal (i.p.) HK-GBS injection led to preterm-delivery and induced apoptosis in placentas and membranes at 14 hours. The expression of calpain, a caspase-independent inducer of apoptosis, was increased in placenta. Treatment with the specific caspase inhibitor Z-VAD-FMK (i.p.) prior to HK-GBS (i.p.) delayed but did not prevent preterm-delivery. Conclusion. Caspase-dependent apoptosis appears to play a role in the timing but not the occurrence of GBS-induced preterm delivery in the mouse

    MyD88 and TRIF mediate the cyclic adenosine monophosphate (cAMP) induced corticotropin releasing hormone (CRH) expression in JEG3 choriocarcinoma cell line

    Get PDF
    Background: Classically protein kinase A (PKA) and transcription factor activator protein 1 (AP-1) mediate the cyclic AMP (cAMP) induced-corticotrophin releasing hormone (CRH) expression in the placenta. However enteric Gram (-) bacterial cell wall component lipopolysaccharide (LPS) may also induce-CRH expression via Toll like receptor (TLR)4 and its adaptor molecule Myd88. Here we investigated the role of MyD88, TRIF and IRAK2 on cAMP-induced CRH promoter activation in JEG3 cells in the absence of LPS/TLR4 stimulation. Methods: JEG3 cells were transfected with CRH-luciferase and Beta-galactosidase expression vectors and either empty or dominant-negative (DN)-MyD88, DN-TRIF or DN-IRAK2 vectors using Fugene6 (Roche). cAMP-induced CRH promoter activation was examined by using a luminometer and luciferase assay. Calorimetric Beta-galactosidase assays were performed to correct for transfection efficiency. Luciferase expression vectors of cAMP-downstream molecules, CRE and AP-1, were used to further examine the signaling cascades. Results: cAMP stimulation induced AP-1 and CRE promoter expression and led to dose-dependent CRH promoter activation in JEG3 cells. Inhibition of MyD88 signaling blocked cAMP-induced CRE and CRH promoter activation. Inhibition of TRIF signaling blocked cAMP-induced CRH but not CRE expression, while inhibition of IRAK2 did not have an effect on cAMP-induced CRH expression. Conclusion: MyD88 and TRIF exert direct regulatory effect on cAMP-induced CRH promoter activation in JEG3 cells in the absence of infection. MyD88 most likely interacts with molecules upstream of IRAK2 to regulate cAMP-induced CRH expression

    Oncomodulin, an EF-hand Ca2+ buffer, is critical for maintaining cochlear function in mice

    Get PDF
    UNLABELLED: Oncomodulin (Ocm), a member of the parvalbumin family of calcium binding proteins, is expressed predominantly by cochlear outer hair cells in subcellular regions associated with either mechanoelectric transduction or electromotility. Targeted deletion of Ocm caused progressive cochlear dysfunction. Although sound-evoked responses are normal at 1 month, by 4 months, mutants show only minimal distortion product otoacoustic emissions and 70-80 dB threshold shifts in auditory brainstem responses. Thus, Ocm is not critical for cochlear development but does play an essential role for cochlear function in the adult mouse. SIGNIFICANCE STATEMENT: Numerous proteins act as buffers, sensors, or pumps to control calcium levels in cochlear hair cells. In the inner ear, EF-hand calcium buffers may play a significant role in hair cell function but have been very difficult to study. Unlike other reports of genetic disruption of EF-hand calcium buffers, deletion of oncomodulin (Ocm), which is predominately found in outer hair cells, leads to a progressive hearing loss after 1 month, suggesting that Ocm critically protects hearing in the mature ear

    Large Format Multifunction 2-Terabyte Optical Disk Storage System

    Get PDF
    The Kodak Digital Science OD System 2000E automated disk library (ADL) base module and write-once drive are being developed as the next generation commercial product to the currently available System 2000 ADL. Under government sponsorship with the Air Force's Rome Laboratory, Kodak is developing magneto-optic (M-O) subsystems compatible with the Kodak Digital Science ODW25 drive architecture, which will result in a multifunction (MF) drive capable of reading and writing 25 gigabyte (GB) WORM media and 15 GB erasable media. In an OD system 2000 E ADL configuration with 4 MF drives and 100 total disks with a 50% ration of WORM and M-O media, 2.0 terabytes (TB) of versatile near line mass storage is available

    Fonofos Exposure and Cancer Incidence in the Agricultural Health Study

    Get PDF
    BACKGROUND: The Agricultural Health Study (AHS) is a prospective cohort study of licensed pesticide applicators from Iowa and North Carolina enrolled 1993–1997 and followed for incident cancer through 2002. A previous investigation in this cohort linked exposure to the organophosphate fonofos with incident prostate cancer in subjects with family history of prostate cancer. OBJECTIVES: This finding along with findings of associations between organophosphate pesticides and cancer more broadly led to this study of fonofos and risk of any cancers among 45,372 pesticide applicators enrolled in the AHS. METHODS: Pesticide exposure and other data were collected using self-administered questionnaires. Poisson regression was used to calculate rate ratios (RRs) and 95% confidence intervals (CIs) while controlling for potential confounders. RESULTS: Relative to the unexposed, leukemia risk was elevated in the highest category of lifetime (RR = 2.24; 95% CI, 0.94–5.34, p(trend) = 0.07) and intensity-weighted exposure-days (RR = 2.67; 95% CI, 1.06–6.70, p(trend) = 0.04), a measure that takes into account factors that modify pesticide exposure. Although prostate cancer risk was unrelated to fonofos use overall, among applicators with a family history of prostate cancer, we observed a significant dose–response trend for lifetime exposure-days (p(trend) = 0.02, RR highest tertile vs. unexposed = 1.77, 95% CI, 1.03–3.05; RR(interaction) = 1.28, 95% CI, 1.07–1.54). Intensity-weighted results were similar. No associations were observed with other examined cancer sites. CONCLUSIONS: Further study is warranted to confirm findings with respect to leukemia and determine whether genetic susceptibility modifies prostate cancer risk from pesticide exposure
    corecore