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Protection from reperfusion injury in the isolated rat heart by 

postischaemic deferoxamine and oxypurinol administration 
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Biomedical Engineering Center, and School of Veterinary Medicine, Purdue University,  

West Lafayette, Indiana, USA. 

 

Abstract 
 

The Langendorff isolated rat heart preparation was used to determine the effect of oxypurinol, a 

xanthine oxidase inhibitor, and deferoxamine, an iron binding agent, on the extent of myocardial 

reperfusion injury after 60 minutes of ischaemia. Thirty rats were divided into three groups of 

10. and an isolated heart preparation made from each rat. The isolated hearts were perfused for 

15 minutes with a modified Krebs-Henseleit perfusate solution to permit stabilisation of the 

preparation. Each heart was then subjected to 60 minutes of total ischaemia at 37°C followed by 

60 minutes of reperfusion with either saline treated perfusate, oxypurinol treated perfusate (1.3 

mmol/litre), or deferoxamine treated perfusate (0.61 mmol/litre). Reperfusion injury was 

assessed by the total amount of creatine phosphokinase released into the perfusate, by changes in 

myocardial vascular resistance, and by morphological examination. The saline treated group 

released significantly more creatine phosphokinase into the perfusate than either the oxypurinol 

treated group (p<0.05) or the deferoxamine treated group (p < 0.05). The mean vascular 

resistance increased for all groups during the 60 minutes of reperfusion compared with that just 

before ischaemia but was significantly greater in the saline treated group than in the drug treated 

groups (p < 0.01). Ultrastructural examination of a randomly selected heart from each group after 

60 minutes of reperfusion showed pronounced attenuation of mitochondria1 and endoplasmic 

reticulum swelling, increased maintenance of membrane integrity, and diminished separation of 

myofilaments in the oxypurinol treated and deferoxamine treated hearts. The mean cross 

sectional area of mitochondria after 60 minutes of reperfusion was significantly greater in the 

saline treated group than in the drug treated groups. Thus both oxypurinol and deferoxamine, 

given after 60 minutes of ischaemia at the onset of reperfusion, can protect the isolated rat heart 

from reperfusion injury, 
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The prompt return of circulation to ischaemic myocardium is necessary to sustain tissue viability. 

Reperfusion supplies the tissue with molecular oxygen and other essential energy forming 

substrates. However, the life sustaining reperfusion may also cause progressive tissue damage by 

initiating deleterious chemical reactions involving partially reduced forms of oxygen--a 

phenomenon referred to as reperfusion injury or the oxygen paradox.
1-5

 Cytotoxic oxygen 

metabolites such as superoxide, hydrogen peroxide, and the hydroxyl radical have been 

implicated as the mediators of such reperfusion injury.
1, 3, 6, 7

  These partially reduced oxygen 

species may be generated from a series of reactions that begin with the accumulation of xanthine, 

hypoxanthine, NAD(P)H, and low molecular weight free iron during of hypoxia.
1, 8

  Reperfusion 

of the affected tissue then supplies oxygen to drive these reactions.
1-3

  Xanthine oxidase, an 

enzyme present in virtually every tissue of the body, may be very important in the generation of 

superoxide, and iron may catalyse the formation of hydroxyl radical during reperfusion of 

transiently ischaemic tissues. 

 

Support for this mechanism of injury has accumulated in recent years through reports of 

protection against reperfusion injury with compounds that scavenge free radicals or inhibit 

various steps in their formation. Superoxide dismutase plus catalase protected the in vivo dog 

heart,
9, 10

 and the isolated rabbit heart,
11

 from reperfusion injury when administered before the 

period of reperfusion. Allopurinol, a xanthine oxidase inhibitor, plus superoxide dismutase 

protected the in situ dog heart from reperfusion injury after 90 minutes of regional ischaemia.
12

 

Unlike most clinical situations, however, these studies tested the effects of drugs administered 

before the period of ischaemia. Practical prevention of reperfusion injury in the setting of 

coronary thrombolysis, for example, would require that the protective drug be given after the 

onset of ischaemia, just before reperfusion. It is therefore important to determine if treatment 

administered after the ischaemic injury, at the onset of reperfusion, can provide the same 

protection that pretreatment provides. 

 

Previous studies in our laboratory have provided support for the ability of drugs to reduce 

reperfusion injury when given after the period of ischaemia, at the onset of reperfusion. 

Deferoxamine, an iron chelating agent, or allopurinol, a xanthine oxidase inhibitor, increased 

survival in a rat model of cardiorespiratory arrest and resuscitation when administered after the 

return of spontaneous circulation.
13, 14

  The present study was conducted to determine if chelation 

of free iron by deferoxamine, or inhibition of superoxide production by the xanthine oxidase 

inhibitor, oxypurinol, are effective means of protecting against reperfusion injury when 

administered after ischaemia, at the onset of reperfusion. 

 

Materials and methods 
 
ISOLATED HEART MODEL 

 

A Langendorff isolated rat heart preparation was used in this study.
15

  After anaesthesia with 

ketamine hydrochloride (90 mg/kg, ip), the heart and proximal aorta were excised from each rat, 

quickly weighed, and immersed in ice cold perfusion solution. Myocardial contractions ceased 

within 5 sec. The aortic root was then cannulated and perfusion begun. Coronary artery perfusate 

entered the aortic root and coronary arteries from a reservoir set at 100 cm above the cannula to 

provide a perfusion pressure of 76 mmHg. A cardiac electrogram was recorded by connecting a 
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cardiac preamplifier to a pin electrode at the apex of the heart and to the metal perfusion cannula 

and displayed on a Physiograph recorder. The perfusion medium was a modified Krebs-

Henseleit solution consisting of (mmol/litre): KCl 4.0, NaCl 100, CaC12 2.0, NaH2PO4 2.0, and 

lactate 30, warmed to 37 °C. The perfusate was adjusted to a pH of 7.4 with NaOH, and bubbled 

with 100% O2 after the heart had been mounted on the perfusion apparatus, a stab incision was 

made in the left ventricular apex and a 1.0 cm long polyethylene drain inserted to allow exit of 

accumulated Thebesian venous drainage. 

 
EXPERIMENTAL DESIGN 

 

Thirty male Wistar rats, each weighing between 350-450 g, were divided into three groups of 10 

each: saline treated, deferoxamine treated, and oxypurinol treated. The isolated heart preparation 

from each rat was allowed a 15 min period of stabilisation, followed by 60 min of total 

ischaemia, during which time the heart was immersed in a nitrogen bubbled bath of Krebs-

Henseleit solution at 37 °C to minimise oxygen reactions at the epicardial surface. The heart was 

then reperfused for 60 min with oxygenated perfusate. The deferoxamine treated hearts were 

reperfused with perfusate that contained 0.61 mmol/litre deferoxamine mesylate. The oxypurinol 

treated hearts were reperfused with perfusate that contained 1.3 mmol/litre oxypurinol. The 

saline treated hearts were reperfused with Krebs-Henseleit solution that contained a volume of 

isotonic saline equivalent to the volume of drug solution added in the other groups (2 ml). 

 
ASSESSMENT OF INJURY 

 

Myocardial injury was evaluated by three criteria: changes in coronary vascular resistance, 

changes in creatine phosphokinase release into the effluent, and changes in morphology. The rate 

of perfusate flow through the myocardium was measured by timed collection, and aliquots of 

effluent were reserved for creatine phosphokinase determination immediately after cannulation, 

at 5 min and 1 min before ischaemia, at 1 min and 5 min after the beginning of reperfusion, and 

at 10 min intervals thereafter. 

 

The myocardial vascular resistance was calculated by dividing the pressure (kPa where 1 kPa = 

7.5 mmHg) by the flow rate (litre/min) and was expressed as kPa-min/litre. The creatine 

phosphokinase assay was based on a modification of the method of Rosalkii
6
 and was expressed 

as Sigma units (SU) released per minute per gram of tissue. One SU of creatine phosphokinase 

will phosphorylate one nanomole of creatine per minute at 25 °C under the conditions of the test. 

Triplicate control assays were performed with oxypurinol, deferoxamine, creatine phosphokinase 

standard, and experimental samples to ensure that these drugs, or the Krebs-Henseleit solution 

itself, did not interfere with creatine phosphokinase activity. There was less than 3% variation in 

measured creatine phosphokinase activity in any of these quality control tests. The creatine 

phosphokinase assays were all performed within 2 hours of collection. 

 

The morphological evaluation of the myocardium used specimens collected at the end of 

reperfusion (t =+60 min). The heart was fixed by perfusion with Trump’s solution (a mixture of 

2% glutaraldehyde and 10% buffered formalin), followed by collection of standardised sections 

from the mid-left ventricular free wall for ultrastructural examination. These sections for electron 

microscopy were then stored in cold Trump’s solution. Standard procedures were used for the 
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preparation of this tissue for transmission electron microscopy. Morphometric studies were done 

to measure the mitochondrial cross sectional area, and a qualitative assessment was made of 

other morphological features such as membrane integrity, intracellular oedema and myofibrillar 

architecture. The morphometric studies used the Video Image Analysis System (WAS; SciCom 

Computer Consultants Co, Irvine, CA, USA) and a 10 x 10 cm grid, which was placed over each 

of five randomly selected photomicrographs (X 8250 magnification) of tissue that was taken 

from the mid-left ventricular free wall of each heart. Systematic measurement of the cross 

sectional area of the mitochondria closest to 25 preselected points on each grid was done. 

Therefore, a total of 125 mitochondria from each heart were evaluated. A mean ( SEM) value 

was then calculated for each group for subsequent statistical comparison, Serial transverse 

sections of the remaining heart tissue from each preparation were fixed in 10% formalin then 

later embedded in paraffin, sectioned, and stained with haematoxylin and eosin for light 

microscopical examination. 

 

Unlike the serial determinations of creatine phosphokinase release and vascular resistance, the 

morphological evaluation of the hearts could be done only at a single point in time. Therefore, 

four separate groups of three hearts each were evaluated as controls against which the three 

treated groups could be compared. Control group 1 was examined after the 15 min stabilisation 

period with no subsequent ischaemia or reperfusion. Control group 2 was allowed a 15 min 

period of stabilisation then subjected to 60 min of ischaemia without any reperfusion before 

fixation. Control group 3 was subjected to 60 min of ischaemia followed by 60 min of 

reperfusion without any treatment. Control group 4 was allowed to beat continuously for the 135 

min of the study with no period of ischaemia. 

 
STATISTICAL ANALYSIS 

 

The mean values for the change in myocardial vascular resistance, the creatine phosphokinase 

measurements, and the mitochondrial cross sectional area were determined for each group of rats 

at each collection time. Student’s t test was used (two tailed analysis) to test the null hypothesis 

that there was no difference for these values between each drug treated group and the saline 

treated group. In addition, an analysis of variance (ANOVA)
17

 was performed for the mean 

mitochondrial cross sectional area for the three treated groups and the four control groups. A p 

value of 0.05 was considered significant. 

 

Results 
 
VASCULAR RESISTANCE 

 

The mean vascular resistance increased for all groups during the 60 min of reperfusion, 

compared with that just before ischaemia (t = -1 min), but the increase was significantly greater 

in the saline treated group than in the drug treated groups. The vascular resistance (kPa-min/litre) 

increased by 2870 ( 273) for the saline treated group, by 722 ( 282) for the deferoxamine 

treated group (t = 3.50, df = 18, p < 0.01) , compared with the saline treated group), and by 549  

( 141) for the oxypurinol treated group (t = 3.94, df = 18, p < 0.01, compared with the saline 

treated group). There was no significant difference between the deferoxamine treated and the 
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oxypurinol treated groups. The sequential vascular resistance values, determined at each 

collection time, for each group are shown in Figure l (a). 

 

 
 

FIG 1 (a) Sequential mean( SEM) myocardial vascular resistance and (b) sequential mean ( SEM) 

values for creatine phosphokinase for the three groups during the period of reperfusion. For clarify, 

solid symbols for data points are omitted at times 1 and 10 min. 
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CREATINE PHOSPHOKINASE RELEASE 

 

The mean total creatine phosphokinase released during the entire reperfusion period was 

significantly greater for the saline treated group than for either of the drug treated groups. The 

total creatine phosphokinase released (SU per gram per 60 min of reperfusion) was 1137 ( 311) 

for the saline treated group, 452 ( 209) for the deferoxamine treated group (t = 4.10, df = 18,  

p < 0.01, compared with the saline treated group), and 231 ( 200) for the oxypurinol treated 

group (t = 4.21, df = 18, p < 0.01, compared with the saline treated group). There was no 

significant difference between the drug treated groups. The sequential creatine phosphokinase 

release (namely, creatine phosphokinase released at each collection time, as opposed to total 

creatine phosphokinase released) is shown in Figure 1 (b). 

 
MORPHOLOGICAL FINDINGS 

 

There were no observable differences in the light microscopical appearance of the three 

treatment groups or the four control groups. All hearts showed an occasional indistinct loss of 

cross striations but no definitive evidence of myodegeneration. However, the ultrastructural 

features showed pronounced alterations. The mitochondrial cross sectional area of all groups is 

given in the table. The values for control group 1 (pre-ischaemia), control group 2 (ischaemia 

and no reperfusion), and control group 4 (no ischaemia and continuous perfusion) were 

significantly less than all other groups. However, both the deferoxamine treated and the 

oxypurinol treated groups had significantly smaller mitochondrial cross sectional area than either 

control group 3 (ischaemia and reperfusion) or the saline treated group. All groups that were 

subjected to ischaemia showed increased interfibrillar space suggestive of intracellular oedema. 

Control group 3 (ischaemia and reperfusion) and the saline treated group also showed 

pronounced distortion of mitochondria1 cristae, myofibrillar disruption, and sarcoplasmic 

reticulum membrane damage (Figure 2). Both of the drug treated groups showed moderate 

amounts of intracellular oedema but no evidence of ruptured membranes. 

 

TABLE Mitochondrial cross sectional area. Values are mean ( SEM) 
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Discussion 
 

This study showed that deferoxamine and oxypurinol can partially protect the isolated rat heart 

from reperfusion injury when administered after 60 min of warm ischaemia at the beginning of 

recirculation. Myocardial protection was evident by diminished creatine phosphokinase release, 

smaller increases in myocardial vascular resistance, and less severe morphological alterations in 

the deferoxamine and oxypurinol treated groups compared with the saline treated or the non-

treated control groups. These findings lend additional support for the concept of xanthine oxidase 

mediated, iron catalysed free radical formation during reperfusion injury. 

 

Reperfusion injury appears to be dependent on several events, some of which begin during the 

period of ischaemia.
18

  These events can be thought of as occurring in three phases. The first 

phase consists of the period of anoxia in which the tissue is depleted of its natural defence 

mechanisms against free radical injury and during which endogenous xanthine dehydrogenase is 

converted to the potential superoxide producing enzyme xanthine oxidase.
1, 19

  Reducing 

equivalents and other substrates for superoxide radical generation such as hypoxanthine and 

xanthine accumulate within the cells during this phase.
1
 

 

The second phase begins with the restoration of circulation to ischaemic tissue and is 

characterised by the rapid and overwhelming, but still reversible, generation of superoxide and 

other free radicals. These free radicals accumulate in an environment now depleted of its natural 

defence mechanism
4, 6

  Iron may play a key role at this stage of injury by converting the 

relatively innocuous superoxide radicals into the strongly oxidising hydroxyl radical via the 

superoxide driven, iron catalysed Haber-Weiss reaction.
20, 21

 

 

The third phase is irreversible and begins with the initiation and propagation of cell protein and 

membrane lipid peroxidation by the free radical species (especially the hydroxyl radical) 

generated during phase two. This phase of injury is characterised by pronounced morphological 

and functional changes of the tissue. The present study was based on this stepwise hypothesis for 

the pathogenesis of reperfusion injury and the known action of oxypurinol (inhibition of the 

xanthine oxidase produced in phase one) and deferoxamine (inhibition of iron catalysed reactions 

in phase two). 

 

Allopurinol, a less water soluble inhibitor of xanthine oxidase than oxypurinol, has been shown 

to provide protection in animal models of cardiorespiratory arrest,
14

 intestinal ischaemia,
22

 

myocardial infarction,
11, 12

 haemorrhagic shock,
23, 24

 skin grafts,
25

 and kidney transplantation.
26, 27 

However, except for the cardiorespiratory arrest studies, the allopurinol was administered before 

the ischaemic insult and was not analogous to most clinical situations of ischaemia and 

reperfusion. 

 

Deferoxamine has been shown to increase the survival of rats after cardiorespiratory arrest and 

resuscitaton when given after the return of spontaneous circulation . In addition, Myers and 

colleagues have shown that deferoxamine, given during the hypoxic period, could decrease 

creatine phosphokinase release from isolated rabbit hearts after 60 min of warm ischaemia.
28
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The results of the present study add additional support for the therapeutic effectiveness of a 

xanthine oxidase inhibitor and an iron chelator in reperfusion injury and support the theory of 

xanthine oxidase mediated, iron catalysed free radical production in reperfusion injury. It is 

noteworthy that this protection is achieved with the drug administered at a clinically relevant 

time (namely, after the ischaemic insult and during reperfusion).  

 

Alternative explanations for the effectiveness of oxypurinol and deferoxamine should be 

considered. Xanthine oxidase inhibitors such as oxypurinol and deferoxamine may act by 

conserving purine nucleotide pools in ischaemic and reperfused tissue, thus providing a potential 

source of intracellular energy substrates. One may also speculate that these drugs have 

membrane stabilising effects. The lack of an assay directly to measure free radicals within tissues 

has forced investigators to make conclusions based on associations with suspected free radical 

events, rather than by directly measured cause and effect relations. 

 

The importance and extent of myocardial reperfusion injury in clinical practice are unknown. 

However, the increased use of coronary artery thrombolysis and coronary angioplasty suggests 

that this type of injury may become more common. The delayed and progressive nature of this 

injury indicates that there is an opportunity for therapeutic intervention in the acute 

postischaemic period. An effective treatment for reperfusion injury would have the potential to 

reduce the significant morbidity and mortality that occurs in the days and weeks that follow such 

conditions as coronary artery occlusion followed by thrombolysis or cardiac arrest with 

resuscitation. 
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