31 research outputs found
Theoretical Investigation of the Deactivation of Ni Supported Catalysts for the Catalytic Deoxygenation of Palm Oil for Green Diesel Production
For the first time, a fully comprehensive heterogeneous computational fluid dynamic (CFD) model has been developed to predict the selective catalytic deoxygenation of palm oil to produce green diesel over an Ni/ZrO2 catalyst. The modelling results were compared to experimental data, and a very good validation was obtained. It was found that for the Ni/ZrO2 catalyst, the paraffin conversion increased with temperature, reaching a maximum value (>95%) at 300 °C. However, temperatures greater than 300 °C resulted in a loss of conversion due to the fact of catalyst deactivation. In addition, at longer times, the model predicted that the catalyst activity would decline faster at temperatures higher than 250 °C. The CFD model was able to predict this deactivation by relating the catalytic activity with the reaction temperature
The effect of noble metal (M: Ir, Pt, Pd) on M/Ce2 O3-¿-Al2 O3 catalysts for hydrogen production via the steam reforming of glycerol
A promising route for the energetic valorisation of the main by-product of the biodiesel industry is the steam reforming of glycerol, as it can theoretically produce seven moles of H2 for every mole of C3 H8 O3. In the work presented herein, CeO2 –Al2 O3 was used as supporting material for Ir, Pd and Pt catalysts, which were prepared using the incipient wetness impregnation technique and characterized by employing N2 adsorption–desorption, X-Ray Diffraction (XRD), Temperature Programmed Reduction (TPR), Temperature Programmed Desorption (TPD), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The catalytic experiments aimed at identifying the effect of temperature on the total conversion of glycerol, on the conversion of glycerol to gaseous products, the selectivity towards the gaseous products (H2, CO2, CO, CH4) and the determination of the H2 /CO and CO/CO2 molar ratios. The main liquid effluents produced during the reaction were quantified. The results revealed that the Pt/CeAl catalyst was more selective towards H2, which can be related to its increased number of Brønsted acid sites, which improved the hydrogenolysis and dehydrogenation–dehydration of condensable intermediates. The time-on-stream experiments, undertaken at low Water Glycerol Feed Ratios (WGFR), showed gradual deactivation for all catalysts. This is likely due to the dehydration reaction, which leads to the formation of unsaturated hydrocarbon species and eventually to carbon deposition. The weak metal–support interaction shown for the Ir/CeAl catalyst also led to pronounced sintering of the metallic particles
Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines
The present investigation provides an overview of the current technology related to the green diesel, from the classification and chemistry of the available biomass feedstocks to the possible production technologies and up to the final fuel properties and their effect in modern compression ignition internal combustion engines. Various biomass feedstocks are reviewed paying attention to their specific impact on the production of green diesel. Then, the most prominent production technologies are presented such as the hydro-processing of triglycerides, the upgrading of sugars and starches into C15–C18 saturated hydrocarbons, the upgrading of bio-oil derived by the pyrolysis of lignocellulosic materials and the “Biomass-to-Liquid” (BTL) technology which combines the production of syngas (H2 and CO) from the gasification of biomass with the production of synthetic green diesel through the Fischer-Tropsch process. For each of these technologies the involved chemistry is discussed and the necessary operation conditions for the maximum production yield and the best possible fuel properties are reviewed. Also, the relevant research for appropriate catalysts and catalyst supports is briefly presented. The fuel properties of green diesel are then discussed in comparison to the European and US Standards, to petroleum diesel and Fatty Acid Methyl Esters (FAME) and, finally their effect on the compression ignition engines are analyzed. The analysis concludes that green diesel is an excellent fuel for combustion engines with remarkable properties and significantly lower emissions
Energy and Exergy-Based Screening of Various Refrigerants, Hydrocarbons and Siloxanes for the Optimization of Biomass Boiler–Organic Rankine Cycle (BB–ORC) Heat and Power Cogeneration Plants
The cogeneration of power and heat was investigated for Biomass Boiler–Organic Rankine Cycle (BB–ORC) plants with the characteristics of typical units, such as the 1 MWel Turboden ORC 10 CHP. The thermodynamic analysis of the ORC unit was undertaken considering forty-two (42) dry and isentropic candidate pure working fluids. Only subcritical Rankine cycles were considered, and the pinch point temperature differences for the evaporation and condensation heat exchangers were kept constant at 10 °C in all cases. The study provides an original and unique screening of almost all pure working fluids that are considered appropriate in the literature under the same operation and optimization conditions and compiles them into a single reference. In its conclusions, the study provides useful fluid selection and design guidelines, which may be easily followed depending on the optimization objective of the ORC designer or operator. In general, hydrocarbons are found to lie in the optimum middle range of the fluid spectrum, between the siloxanes that maximize the production of mechanical power and the refrigerants that maximize the production of heat. Specific hydrocarbon fluids, such as cyclopentane, heptane, hexane, benzene, and toluene, are found as rational options for maximum mechanical efficiency when operating with practically feasible condensation pressures between 10 and 200 kPa. At condensation pressures below 10 kPa, ethylbenzene, o-xylene, m-xylene, p-xylene, and nonane are also found to be feasible options. Finally, cyclopentane, hexane, and MM (hexamethyldisiloxane) are selected as the most appropriate options for cogeneration plants aiming simultaneously at high mechanical power and maximum temperature water production. © 2022 by the authors
Effect of Active Metal Supported on SiO2 for Selective Hydrogen Production from the Glycerol Steam Reforming Reaction
The performance of nickel, cobalt, and copper supported on silica as catalysts was evaluated for the glycerol steam reforming (GSR) reaction. The samples were characterized by nitrogen-porosimetry according to Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), and inductively coupled plasma atomic emission spectroscopy (ICP-AES), while the deposited carbon on the catalytic surface was measured with a CHN-analyzer. Catalysts were studied in order to investigate the effect of the reaction temperature on (i) glycerol total conversion, (ii) glycerol conversion to gaseous products, (iii) hydrogen selectivity and yield, (iv) selectivity of gaseous products, and (v) selectivity of liquid products. The results showed that the Ni based on silica (Ni/Si) catalyst was more active and produced less liquid effluents than the catalysts that used an active metal such as Co or Cu. Moreover, the H2 yield from the Ni/Si catalyst was very close to the theoretical maximum predicted by thermodynamics, and the CO2 production was favoured in comparison to CO production, which is important for use in fuel cells
The effect of noble metal (M: Ir, Pt, Pd) on M/Ce2 O3-\u3b3-Al2 O3 catalysts for hydrogen production via the steam reforming of glycerol
A promising route for the energetic valorisation of the main by-product of the biodiesel industry is the steam reforming of glycerol, as it can theoretically produce seven moles of H2 for every mole of C3 H8 O3. In the work presented herein, CeO2 \u2013Al2 O3 was used as supporting material for Ir, Pd and Pt catalysts, which were prepared using the incipient wetness impregnation technique and characterized by employing N2 adsorption\u2013desorption, X-Ray Diffraction (XRD), Temperature Programmed Reduction (TPR), Temperature Programmed Desorption (TPD), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The catalytic experiments aimed at identifying the effect of temperature on the total conversion of glycerol, on the conversion of glycerol to gaseous products, the selectivity towards the gaseous products (H2, CO2, CO, CH4) and the determination of the H2 /CO and CO/CO2 molar ratios. The main liquid effluents produced during the reaction were quantified. The results revealed that the Pt/CeAl catalyst was more selective towards H2, which can be related to its increased number of Br\uf8nsted acid sites, which improved the hydrogenolysis and dehydrogenation\u2013dehydration of condensable intermediates. The time-on-stream experiments, undertaken at low Water Glycerol Feed Ratios (WGFR), showed gradual deactivation for all catalysts. This is likely due to the dehydration reaction, which leads to the formation of unsaturated hydrocarbon species and eventually to carbon deposition. The weak metal\u2013support interaction shown for the Ir/CeAl catalyst also led to pronounced sintering of the metallic particles
Smart air monitoring for indoor public spaces using mobile applications
Summarization: As people spend approximately 90% of their time indoors, monitoring the quality of indoor air is crucial in protecting public health. In recent years, technologies such as Internet of Things (IoT) and cloud computing have introduced new measurement capabilities in a variety of environments. Low-cost sensor technology can significantly help in the field of air pollution monitoring, providing data on air quality levels and indoor air emissions. The work presented herein focuses on a cloud computing server able to analyse data in real time and present the results obtained with visual effects which illustrates the prevailing indoor air conditions, making data easier to understand and more interesting to the user. In addition, the server can alert mobile application users or facility managers when air quality is poor so that remedial action can be undertaken immediately.Παρουσιάστηκε στο: IOP Conference Series: Earth and Environmental Scienc
Theoretical Investigation of the Deactivation of Ni Supported Catalysts for the Catalytic Deoxygenation of Palm Oil for Green Diesel Production
For the first time, a fully comprehensive heterogeneous computational fluid dynamic (CFD) model has been developed to predict the selective catalytic deoxygenation of palm oil to produce green diesel over an Ni/ZrO2 catalyst. The modelling results were compared to experimental data, and a very good validation was obtained. It was found that for the Ni/ZrO2 catalyst, the paraffin conversion increased with temperature, reaching a maximum value (>95%) at 300◦CHowever, temperatures greater than 300◦C resulted in a loss of conversion due to the fact of catalyst deactivation. In addition, at longer times, the model predicted that the catalyst activity would decline faster at temperatures higher than 250◦C. The CFD model was able to predict this deactivation by relating the catalytic activity with the reaction temperature
Effect of Supports and Promoters on the Performance of Ni‐Based Catalysts in Ethanol Steam Reforming
Ethanol steam reforming (ESR) is one of the potential processes to convert ethanol into valuable products. Hydrogen produced from ESR is considered as green energy for the future and can be an excellent alternative to fossil fuels with the aim of mitigating the greenhouse gas effect. The ESR process has been well studied, using transition metals as catalysts coupled with both acidic and basic oxides as supports. Among various reported transition metals, Ni is an inexpensive material with activity comparable to that of noble metals, showing promising ethanol conversion and hydrogen yields. Additionally, different promoters and supports were utilized to enhance the hydrogen yield and the catalyst stability. This review summarizes and discusses the influences of the supports and promoters of Ni-based catalysts on the ESR process.</p