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Abstract: A promising route for the energetic valorisation of the main by-product of the biodiesel
industry is the steam reforming of glycerol, as it can theoretically produce seven moles of H2 for
every mole of C3H8O3. In the work presented herein, CeO2–Al2O3 was used as supporting material
for Ir, Pd and Pt catalysts, which were prepared using the incipient wetness impregnation technique
and characterized by employing N2 adsorption–desorption, X-Ray Diffraction (XRD), Temperature
Programmed Reduction (TPR), Temperature Programmed Desorption (TPD), X-ray Photoelectron
Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The catalytic experiments aimed
at identifying the effect of temperature on the total conversion of glycerol, on the conversion of
glycerol to gaseous products, the selectivity towards the gaseous products (H2, CO2, CO, CH4) and
the determination of the H2/CO and CO/CO2 molar ratios. The main liquid effluents produced
during the reaction were quantified. The results revealed that the Pt/CeAl catalyst was more selective
towards H2, which can be related to its increased number of Brønsted acid sites, which improved the
hydrogenolysis and dehydrogenation–dehydration of condensable intermediates. The time-on-stream
experiments, undertaken at low Water Glycerol Feed Ratios (WGFR), showed gradual deactivation
for all catalysts. This is likely due to the dehydration reaction, which leads to the formation of
unsaturated hydrocarbon species and eventually to carbon deposition. The weak metal–support
interaction shown for the Ir/CeAl catalyst also led to pronounced sintering of the metallic particles.
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1. Introduction

Anthropogenic dominance over the planet is so profound that the term ‘anthropocene’ has been
proposed as a more apt description of the current geological epoch. Although the consequences of the
impact of anthropos are catastrophic for the global sum of ecosystems, i.e., atmosphere, hydrosphere,
lithosphere and biosphere, the issue of global climate change—caused by our insatiable appetite
for petro-based energy—is perhaps causing the greatest agony over humanity′s future well being.
Arguably, despite making significant progress in substituting fossil energy with Renewable Energy
Systems (RES) for electricity production, in the transport sector petro-energy retains a protagonists′ role,
with current efforts in finding an alternative relying on the development of starch- and sugar-based
ethanol, deoxygenation for the production of bio-hydrogenated diesel, and fatty acid methyl ester
(FAME) biodiesel [1–4]. Although it′s not a hyperbole to describe the advancement of the biodiesel
industry as phenomenal—the sector achieved growth rates of almost 25% per annum between 2005 and
2015, leading to a seven-fold expansion during a single decade—biofuels account for less than 7% of
fuels used in the transport sector [5,6]. Moreover, the production of crude glycerol, the main by-product
of the transesterification reaction, has also expanded synchronously, hanging like an anathema over
the sustainable credentials of the industry [7,8].

As glycerol (C3H8O3) is a polyol with three hydroxyl groups, it may be possible to utilize it in a
plethora of industrial platforms (Bagheri et al. [9] has provided an excellent review on the different
technological pathways that are currently being developed) however, the pressing need for further
‘greening’ of the energy sector, means that its conversion to hydrogen via thermochemical processes
(i.e., via pyrolysis or different reforming reactions) is perhaps the most attractive option [10–13]. As is
widely accepted, hydrogen is an efficient energy carrier that can provide clean power in stationary,
portable and transport applications [14,15]. Thus, the steam reforming of glycerol (GSR) has been
enthusiastically researched over the past few years because, as it is clear from the overall reaction
(Equation (1)), one mole of C3H8O3 can, in theory, produce seven moles of H2. It is noted that
Equation (1) is endothermic (∆H0 = 123 kJ mol−1) and combines the decomposition of C3H8O3

(Equation (2)), which is also endothermic (∆H0 = 245 kJ mol−1) and the water–gas shift (WGS,
Equation (3)), an exothermic reaction (∆H0 = −41 kJ mol−1). C3H8O3 decomposition occurs at
temperatures exceeding 300 ◦C and can involve different parallel and/or consecutive steps, which not
only include the cleavage of the C–C and C–O bonds, but also dehydration, dehydrogenation,
hydrogenation, isomerisation and polymerisation reactions [16,17]. Additionally, depending on the
operating conditions and/or the catalytic system under consideration, a number of other reactions may
also parallelly occur, such as, CO methanation (Equation (4)), CO disproportionation (Equation (5)),
methane reforming (Equations (6) and (7)) carbon formation (Equations (8)–(10)), methanation of
glycerol (Equation (11)) and direct glycerol decomposition (Equation (12)) [18–20].

Glycerol steam reforming: C3H8O3 + 3H2O→ 3CO2 + 7H2 (1)

Glycerol decomposition: C3H8O3→ 3CO + 4H2 (2)

Water gas shift: CO + H2O↔ CO2 + H2 (3)

CO methanation: CO + 3H2↔ CH4 + H2O (4)

CO disproportionation: 2CO↔ CO2 + C (5)

Methane steam reforming: CH4 + 2H2O↔ CO2 + 4H2 (6)

Methane dry reforming: CH4 + CO2↔ 2H2 + 2CO (7)

Methane decomposition: CH4↔ 2H2 +C (8)

Carbon gasification: C + 2H2O↔ 2H2 + CO2 (9)
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Carbon formation: CO + H2↔ H2O + C (10)

Methanation of glycerol: C3H8O3 + 5H2↔ 3CH4 + 3H2O (11)

Direct glycerol decomposition: C3H8O3→ H2 + 3H2O + 3C (12)

Apart from the possibility of obtaining high H2 yields, the GSR has two additional advantages;
it is a mature industrial technology (the steam reforming of methane and naphtha generate 48%
and 30%, respectively, of the commercially produced H2, thus switching feedstocks should not pose
insurmountable challenges for the industry) and as thermodynamics predict, its best utilised at
atmospheric pressure [21,22]. According to the latter studies (i.e., thermodynamics) the yield to
hydrogen maximises at relatively high temperatures (<630 ◦C) and high water to glycerol feed ratios
(WGFR, <9:1, molar); at such conditions the maximum attainable H2 yield is 6.2 (mole of H2 per mole
of C3H8O3) [20,23,24].

The catalyst system chosen for use in the GSR should have the capacity to promote the cleavage of
C–C, O–H, and C–H bonds in the C3H8O3 molecule and inhibit that of the C–O bonds (as this would
lead to the production of alkenes and thus, the formation of carbon). The catalyst used should also
promote the WGS reaction, as this would allow the absorbed surface CO to be removed as CO2 [25,26].
As a result, numerous efforts at identifying the most appropriate catalytic systems have been carried
out, with the majority of reports focusing on the development of Ni catalysts based on a variety of
different metal oxides (e.g., Al2O3, SiO2, La2O3, CeO2, ZrO2) and/or the use of transition metals (e.g.,
ZrO2, Co, Cu), lanthanide metals (e.g., La, Ce) or alkaline earth metals (e.g., Ca, MgO, Ba) as modifiers
in the supports. The exegesis for the focus on Ni lies with the fact that it is a widely available metal
(thus, inexpensive) and also that it shows very high intrinsic activity when well dispersed on to the
support [27–36]. Moreover, Ni promotes the cleavage of C–C, O–H, and C–H bonds (in the order
of O–H, -CH2-, C–C, –CH3) [22], as well as dehydrogenation and hydrogenation [27,28]. However,
despite the reporting of some very promising results [30–35], at high temperatures, Ni-based catalysts
are also susceptible to carbon deposition and metal particle sintering, which unavoidably leads to their
eventual deactivation [36,37].

Due to the high cost of noble metal catalysts, their use is limited, despite the fact that such systems
usually show high catalytic activity and low carbon formation during steam reforming reactions.
Most of the works reported in the literature for the GSR have focused on ruthenium [38–43], as Ru is
the least expensive among all noble metals, and platinum [44–51], but one may also find a few works
that have examined the performance of Rh [52–55], Ir [56] or Pd [57] catalysts. However, there are only
a handful of works that perform a comparative assessment of the performance of different noble metal
catalysts [58,59]. One of the earliest such works was reported by Adhikari et al. [58] who compared the
performance of Rh, Pt, Pd, Ir, Ru and Ni catalysts supported on (i) commercial alumina ceramic foam
monoliths and, (ii) the same alumina monoliths modified with CeO2. However, the catalysts were not
activated prior to reaction, resulting in poor glycerol conversion and H2 selectivity. Senseni et al. [59]
examined the performance of Rh, Ru, Pt, Ir (1 wt.%) catalysts supported on Al2O3 modified with MgO,
between 300 and 600 ◦C, and showed that glycerol conversion followed the order Rh > Pt > Ru > Ir,
while H2 selectivity was Rh > Ir > Ru > Pt. Time-on-stream tests were carried out only on the Rh
catalysts, demonstrating that the catalyst was stable over time.

In addition to the choice of active metal, the support also affects the activity and stability
characteristics of a catalytic system. In general, dispersion is aided when the support has a high surface
area and can provide strong metal support interactions (SMSI). On the other hand, a high surface area
means that the pore size distribution will likely be small (inhibiting intra-particle diffusion of reactants
and products), while too strong interaction will negatively affect the reducibility of the active metal.
The acidity/basicity characteristics of the supporting material are also crucial parameters, as methane
decomposition (Equation (8)), which leads to carbon formation, is favoured over the acid sites of the
support, while CO2 activation, which removes the deposited coke, occurs over the basic sites [60–62].
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Alumina, at first approximation, is an attractive support for GSR catalysts as it possesses a
relatively high surface area, and can also provide mechanical and chemical resistance during the
reaction [63,64]. Moreover, due to its acid character, alumina also promotes dehydration, polymerization
and isomerisation, which take place during the GSR. However, alumina also induces carbon deposition
and sintering; the former is caused by the promotion of cracking reactions, while the latter can occur
through the transition of Al2O3 to a crystalline phase during high temperature reactions [30,31,39,60].
Thus, the acid character of Al2O3 must be tuned in order to help promote the desired reactions, while at
the same time avoid carbon deposition and sintering.

Cerium oxide, although thermally unstable [65], is known to possess high oxygen storage capacity
(OSC) and redox properties (Ce4+/Ce3+) that help to improve the dispersion of the active sites and
decrease carbon deposition on the catalyst surface by promoting carbon oxidation reactions. Moreover,
CeO2 can help to achieve strong interaction with the supported metal (improving the stability of the
active phase against sintering), and also increase basicity, which leads to the adsorption and activation
of CO2 on the support sites [66–70].

Profeti et al. [62] studied the catalytic activity of Ni catalysts supported on CeO2–Al2O3 that
was modified with noble metals (Pt, Ir, Pd and Ru) during the GSR and reported that the presence
of cerium oxide helped prevent the formation of inactive nickel aluminate, thus helping to enhance
performance; their results showed that the highest glycerol conversion was achieved by the NiPd/CeAl
and NiPt/CeAl samples. Demsash et al. [71] prepared Ni/CeAl catalysts and examined the effect
of Ni (5, 10 and 15 wt.%) and CeO2 (5 and 10 wt.%) loadings and found that the best results were
achieved by the 10Ni/Al2O3/5CeO2; they thus argued that an optimal CeO2 (and Ni) loading exists.
Iriondo et al. [72] studied the GSR using Ni catalysts supported on bare CeO2 and Al2O3, and alumina
modified with ceria and showed that the incorporation of low ceria loadings, i.e., 5 and 10 wt.%,
resulted in enhanced catalytic activity, as CeO2 helped to stabilize the active phase through strong
Ni–CeO2 interactions; at higher CeO2 loadings performance declined in agreement with the work of
Profeti et al. [62]. Kamonsuangkasem et al. [73] prepared CeO2–Al2O3 mixed oxides and used them
as supports for Ni-based catalysts (tested in the GSR). The authors reported that by using a sol–gel
preparation method, they were able to incorporate the Ce species into the Al2O3 structure, forming a
CeAlO3 perovskite, which suppressed the interaction between the active phase and alumina and thus,
led to the formation of an enhanced number of active sites. Moreover, the incorporation of CeO2 into
the support helped increase the number of Brønsted acid sites, which improved the hydrogenolysis
and dehydrogenation–dehydration of condensable intermediates, leading to improved H2 production.
Chen et al. [74], has also reported that the formation of CeAlO3 enhanced considerably the catalyst′s
resistance to carbon deposition ducting the reforming of CH4/CO2.

Prompted by the above, we have proceeded in preparing a CeO2–Al2O3 support (10 wt.%),
which we then used to synthesize low loading Pt, Pd and Ir catalysts (0.5 wt.%); the support and the
catalysts were prepared via the incipient wetness impregnation technique. The materials were then
examined in terms of catalytic activity and time-on-stream stability for the glycerol steam reforming
reaction. The characterization techniques that were used to identify the catalysts′ surface and bulk
properties that affect the reaction′s products included N2 adsorption–desorption, X-Ray Diffraction
(XRD), Temperature Programmed Reduction (TPR), Temperature Programmed Desorption (TPD),
X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The catalytic
experiments aimed at identifying the effect of temperature on the total conversion of glycerol, on the
conversion of glycerol to gaseous products, the selectivity towards the gaseous products (H2, CO2,
CO, CH4) and the determination of the H2/CO and CO/CO2 molar ratios. Moreover, we identified
and quantified the liquid effluents produced during the reaction. Time-on-stream experiments were
conducted for 8 h at harsh reaction conditions in order to induce catalyst deactivation and the spent
catalysts were examined using TEM analysis.
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2. Results and Discussion

2.1. Characterizations Results

Table 1 shows the specific surface area (m2 g−1), pore volume (cm3 g−1) and average pore width
(nm) of the calcined catalytic samples used herein. As can be seen, the Ir/CeAl, Pd/CeAl and Pt/CeAl
catalysts present comparable values for specific surface area (163–179 m2 g−1), pore volume (0.27–0.30
cm3 g−1) and average pore width (14.0–17.4 nm). Moreover, as can be seen in Figure 1, all catalysts
present isotherms of Type IV(a) and hysteresis loops of H2(b) type, displaying minimal adsorption at
the low pressure range (P/P0 < 0.06) and substantial adsorption at higher pressures (0.6 < P/P0 < 1.0).
This is indicative of mesoporous materials with some macroporous structures [30]. This conclusion is
further verified by the BJH adsorption data and the corresponding pore size distribution curves (inset
of Figure 1), showing that the majority of the population of pores is in the meso-range.

Table 1. Morphological and textural properties for the prepared catalysts.

Catalyst SSA (m2 g−1) Pore Volume (cm3 g−1) Av. Pore Width (nm)

Ir/CeAl 179 0.30 17.4
Pd/CeAl 167 0.27 14.0
Pt/CeAl 163 0.28 15.5
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Figure 1. Pore size distribution and N2 adsorption–desorption isotherms (inset) of the calcined 
Pt/CeAl, Pd/CeAl and Ir/CeAl catalysts. 

The XRD patterns of the calcined Pt/CeAl, Pd/CeAl and Ir/CeAl catalytic samples are depicted 
in Figure 2. As can be seen, all the catalysts showed substantial diffraction peaks at 2θ = 28.5°, 33.0°, 
47.6°, 56.4° and 59.0° which correspond to the (111), (200), (220) and (311) planes of the cubic fluorite 
structure of cerium oxide (JCPDS Card No.: 96-900-9009) and at 2θ = 34.0° (220), 37.7° (311), 45.0° 
(400) and 67.0° (440), corresponding to the crystal structure of γ-Al2O3 (JCPDS Card No.: 
96-900-7636) [70]. From the XRD pattern of the Ir/CeAl catalyst, characteristic diffraction peaks of 
highly crystalline particles of IrO2 at 2θ = 28.0° and 54.0° can also be clearly observed, which 
correspond to the (110) and (211) planes [75]. On the other hand, no diffraction peaks related to PtO2 
(expected at 2θ = 33.3° and 55.9°) or PdO (expected at 2θ = 34.7° and 54.8°) are observed on the 

Figure 1. Pore size distribution and N2 adsorption–desorption isotherms (inset) of the calcined Pt/CeAl,
Pd/CeAl and Ir/CeAl catalysts.

The XRD patterns of the calcined Pt/CeAl, Pd/CeAl and Ir/CeAl catalytic samples are depicted
in Figure 2. As can be seen, all the catalysts showed substantial diffraction peaks at 2θ = 28.5◦, 33.0◦,
47.6◦, 56.4◦ and 59.0◦ which correspond to the (111), (200), (220) and (311) planes of the cubic fluorite
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structure of cerium oxide (JCPDS Card No.: 96-900-9009) and at 2θ = 34.0◦ (220), 37.7◦ (311), 45.0◦ (400)
and 67.0◦ (440), corresponding to the crystal structure of γ-Al2O3 (JCPDS Card No.: 96-900-7636) [70].
From the XRD pattern of the Ir/CeAl catalyst, characteristic diffraction peaks of highly crystalline
particles of IrO2 at 2θ = 28.0◦ and 54.0◦ can also be clearly observed, which correspond to the (110)
and (211) planes [75]. On the other hand, no diffraction peaks related to PtO2 (expected at 2θ = 33.3◦

and 55.9◦) or PdO (expected at 2θ = 34.7◦ and 54.8◦) are observed on the diffractograms of Pt/CeAl
and Pd/CeAl. However, as will be described below, these species were detected during the TPR
and XPS experiments of the calcined and reduced catalysts [76]. The absence of the characteristic
diffraction peaks of the PtO2 and PdO may be caused by a number of reasons, i.e., the low concentration
of the metal oxides in the supporting material, the possible formation of amorphous structures or
interfacial solid solutions, the increased dispersion of PtO2 and/or PdO on the catalyst surface or finally,
the formation of microscopic crystalline sizes, which escape from the XRD detection [77].
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The H2–TPR experiments (Figure 3) were carried out with the purpose of investigating the strength
of the interaction (electronic or geometrical) between the CeO2–Al2O3 support and the active metal
sites (Ir, Pt and Pd). The interactions are anticipated to affect the reducibility of the metal oxides,
and as a result, influence their catalytic performance in terms of glycerol conversion, H2 selectivity
and yield. From Figure 3 shown herein, reduction peaks at low (100–300 ◦C), medium (300–600 ◦C)
and high temperatures (600–800 ◦C) can be observed. According to the literature [28], the created
weak metal–support interactions are related with the genesis of reduction peaks at low temperature,
while peaks at medium and high temperature are attributed to the existence of medium and strong
metal–support interaction, respectively. Furthermore, the reduction of cerium oxide occurs at ≈500
and 830 ◦C for the surface and the bulk oxygen species, respectively [78]. For the Ir and Pd catalysts,
reduction peaks were observed at 150 ◦C and in the temperature range of 200–300 ◦C, indicating either
smaller Ir and/or Pd particles size (better dispersion of active sites) or the existence of weaker interaction
between the active sites with the supporting material, leading to an easier reduction [25]. On the other
hand, the Pt-based catalyst presented larger peaks at higher reduction temperature, probably due
to the reduction of various PtOx-oxides interacting with the support under different metal–support
interactions or to the easier reduction of CeO2. Duarte et al. [79] reported that the first two peaks
can be attributed to the reduction in highly dispersed Pt oxide species with different interaction
with the supporting material including some isolated platinum ions, while the third peak centred at
higher temperature can be assigned to the reduction in bulk-like or clustered platinum oxide species.
Furthermore, Damyanova et al. [80] showed that the reduction peaks at 200–320 ◦C may be attributed
to Pt particles with a non-uniform size distribution and to the formation of non-stoichiometric cerium
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oxide; they also reported that the presence of platinum particles on the catalyst surface causes the
easier reduction in cerium oxide at lower temperature.Catalysts 2020, 10, x FOR PEER REVIEW 7 of 25 
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Figure 4. (a) CO2–TPD, and (b) NH3–TPD profiles of the Ir/CeAl, Pd/CeAl and Pt/CeAl calcined 
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Figure 4b, all the catalysts present a very well-defined acid sites distribution in the temperature 
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Figure 3. H2–TPR profiles of the calcined Ir/CeAl, Pd/CeAl and Pt/CeAl catalysts.

Temperature programmed desorption of CO2 (Figure 4), was performed after pre-treatment in
oxygen atmosphere and at room temperature (25 ◦C) and aimed at investigating the number and
strength of basic sites on the catalytic samples tested herein. According to published studies [81],
the basic sites can be categorized based on their strength, to weak (50–200 ◦C), intermediate (200–400 ◦C),
strong (400–650 ◦C) and very strong (>650 ◦C) regions. As can been seen in Figure 4a, the CO2 desorption
profile of the Pt/CeAl catalyst showed that the majority of basic sites are located mainly at higher
desorption temperature due to the presence of strong and very strong basic sites on the catalyst surface.
However, some thermal decomposition of carbonates cannot be excluded for the peak centred at
temperature higher than 650 ◦C [82]. On the other hand, the Ir/CeAl catalysts presented the highest
intensity of desorbed CO2 at low temperature (≈200◦C) due to the creation of weaker bonds between
its surface and CO2. As for the Pd-based catalyst, it seems to present a uniform distribution between
weak, intermediate and strong basic sites. According to the literature [30,83], in steam reforming
reactions, increased basicity on the catalyst surface has the ability to enhance the transformation of
oxygenated hydrocarbon compounds (OHCs) into H2 and CO2, increasing the overall catalytic activity
in terms of desirable gaseous products.
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Temperature-programmed desorption of NH3 was performed to estimate the concentration and
the character of the acid sites, as well as the total acidity of the catalytic materials. As can be seen
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in Figure 4b, all the catalysts present a very well-defined acid sites distribution in the temperature
range between 50 and 800 ◦C. Analytically, the TPD-NH3 profiles show at least three NH3 desorption
areas; the first, located at lower temperatures (<200 ◦C), can be assigned to weak acid sites, the second,
located at medium desorption temperatures (200–600 ◦C), can be separated to intermediate and strong
acid sites, while the third region, at temperature above 600 ◦C, may be assigned to the possible
reaction of NH3 towards NOx formation [84]. Though, it has to be mentioned here that the NOx
formation can only be speculated as the experiment was monitored through TCD detector and not
through e.g., mass spectrometry. Despite this, it is still a valid speculation if one considers the
adsorption and successive dehydrogenation of NH3 over these catalysts. At the same time, ceria,
which is a reducible oxide, is anticipated to provide labile oxygen species and this phenomenon is
intensified as the temperature is increased (ca. above 600 ◦C). According to published studies [28,85],
NH3 desorbed at lower temperature can be linked to physisorbed ammonia on weak acid sites,
while NH3 desorbed at intermediate temperature (200–600 ◦C) can be associated with the presence
of Brønsted acid sites and the presence of stronger acid sites. From the TPD-NH3 profiles of the
catalytic materials tested herein, the Pt/CeAl presents the larger population of Brønsted acid sites and
physisorbed ammonia on weak acid sites, followed by the Pd/CeAl and Ir/CeAl catalysts. This is
expected to have important implications for the GSR, as increased number of Brønsted acid sites help
improve the hydrogenolysis and dehydrogenation–dehydration of condensable intermediates, leading
to improved H2 production [73]. Moreover, literature reports suggest that the catalysts′ surface acidity
affects the metal particle size. Specifically, Jeon et al. [86] investigated the correlation between the weak
Brønsted acid sites and metal particle size and concluded that the increase in the number of the former
for the SiO2–Al2O3 was responsible for the formation of smaller Pt crystallite size, leading to higher
methane selectivity. Given that alumina thermal treatment leads to de-hydroxylation in the 250–550 ◦C
range (depending on the alumina phases present) [87], most likely no de-hydroxylation would be
expected above 600 ◦C. This could be investigated using sophisticated analysis, such as solid state
NMR, FTIR or theoretical calculations [88] as de-hydroxylation leads to the formation of 3-(strong),
4-(medium) and 5-(weak) coordinate Al Lewis acid sites, the coordination environment of which can
be studied with the above-mentioned techniques.

XPS analysis (Figure 5 and Table 2) was employed in order to derive information over the surface
elemental atomic concentration and the states of the impregnated elements of the reduced catalysts.
For the Pt/CeAl (Figure 5c) catalyst, peaks at 72.5–73.1 eV can be attributed to Pt2+ 4f7/2, while peaks
located at 70.4–71.1 eV can be assigned to Pt0 4f7/2 [89]. However, as the binding energies of Al 2p
and Pt 4f overlap, the high amount of Al precludes any clear quantification of Pt species. For the
Pd/CeAl catalyst (Figure 5b), the two peaks observed can be attributed to Pd 3d5/2 (at 334.9 eV) and
Pd 3d3/2 (at 340.4 eV), which correspond to Pd0 [90]. The binding energy of Pd 3d5/2 was at 334.9 eV,
indicating the presence of Pd in metallic state, and with an atomic surface concentration equal to
0.11%. For the Ir/CeAl catalyst (Figure 5a) two peaks can be observed, proving the presence of Ir 4f7/2

(at 60.6 eV) and Ir 4f5/2 (at 63.7 eV), which corresponds to Ir in the metallic state and with an atomic
surface concentration equal to 0.08% [91].
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Figure 5. (a) Ir 4f spectra of the Ir/CeAl, (b) Pd 3d spectra of Pd/CeAl and (c) Al 2p / Pt 4f of the Pt/CeAl
reduced catalysts.

Table 2. XPS data of the reduced catalysts.

Sample Pd0, Ir0, Pt0

Position (eV)
PdII, IrIV, PtII

Position (eV)
Pd0/PdII, Ir0/IrIV,

Pt0/PtII
Metal at. % on

Surface

Pd/CeAl 334.9 – All Pd0 0.11

Ir/CeAl 60.6 – All Ir0 0.08

Pt/CeAl 71.1 * * 0.02

* As Al 2p and Pt 4f have the same binding energy, high amount of Al do not permit a clear quantification of
Pt+ species.

Figure 6 shows the high-angle annular dark-field–scanning transmission electron microscope
HAADF–STEM images, particle size distribution histograms and EDS spectra obtained for the reduced
Ir/CeAl (Figure 6a), Pd/CeAl (Figure 6b) and Pt/CeAl (Figure 6c) catalysts. HAADF–STEM images have
Z-contrast, where heavy atoms have high brightness. The elemental analysis revealed the presence
of Al and Ce on all catalysts and Ir, Pd and Pt on the corresponding samples, as anticipated. C and
Cu were also detected on all samples due to the TEM grid-support used for the analysis. The mean
particle size followed the order Ir/CeAl > Pd/CeAl (3.7 ± 2.0 nm) > Pt/CeAl (1.1 ± 0.2 nm); the latter
catalyst also shows a very narrow Pt size distribution. Regarding the Ir/CeAl catalyst, the particle
size histogram (Figure 6a) depicts the presence of two main populations (multimodal distribution):
(i) (1.6 ± 0.4 nm), and (ii) (11.8 ± 6.6 nm).
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1 
 

 

 Figure 6. HAADF–STEM images, particle size distribution and EDS spectrum of red-dashed area
marked of the reduced: (a) Ir/CeAl, (b) Pd/CeAl, and (c) Pt/CeAl catalysts.

2.2. Catalytic Activity and Selectivity

The activity and selectivity of the catalytic samples was examined at atmospheric pressure
between 400 and 750 ◦C using a WGFR equal to 20:1 (molar) in a continuous flow fixed-bed reactor.
Catalytic activation was carried out in situ (prior to catalytic testing) under a flow of high purity
H2 at 800 ◦C for 1 h (more details of the experimental procedure followed are given in Section 3.3
below). Figure 7 shows, for all catalysts tested herein, the influence of reaction temperature on the
total conversion of C3H8O3 (XC3H8O3, Figure 7a), on the conversion of C3H8O3 into gaseous products
(XC3H8O3, gaseous, Figure 7a), on the H2 selectivity and yield (SH2 and YH2, respectively, Figure 7b),
the selectivity to CO2 and CO (SCO2 and SCO, Figure 7c), the selectivity to CH4 (SCH4, Figure 7d),
and on the H2/CO (Figure 7e) and CO/CO2 molar ratio (Figure 7f); H2, CO2, CO and CH4 were the
only gaseous products identified in any significant concentrations (traces of C2H4 were also identified,
but not quantified), in agreement with literature reports [37,46,47,49]. It is also noted that as C3H8O3 is
thermally unstable, the extent of pyrolysis phenomena has a significant role in the GSR, for example
Buffoni et al. [45] reported that the thermal decomposition of glycerol could reach 30% molar at 650 ◦C
(for a feed containing 30 wt.% glycerol) and Pompeo et al. [49] 5% molar at 450 ◦C (for a feed containing
10 wt.% glycerol). Moreover, it is possible that the intermediates formed during the C3H8O3 cracking
are reformed on the catalysts′ surface [31,49].
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Figure 7. (a) Total C3H8O3 conversion and C3H8O3 conversion into gaseous products, (b) H2 
selectivity and yield, (c) CO2 and CO selectivity, (d) CH4 selectivity (y-axis on a different scale), (e) 
H2/CO molar ratio, and (f) CO/CO2 molar ratio (activity experiments). 

From the results presented herein, and for all catalytic samples, it is obvious that the total 
conversion of C3H8O3 is very high (above 75%) even at temperatures as low as 400 °C and reaches 
close to 95% over 650 °C (Figure 7a). On the other hand, temperature dramatically affects the 
conversion of C3H8O3 into gaseous products, especially between 450 and 650 °C; over 650 °C C3H8O3, 
gaseous almost reaches a plateau (Figure 7a). However, it is hard to discern any significant 
differences between the catalytic samples in terms of C3H8O3 conversion. These results are explained 
by the endothermic nature of the GSR, which means that as the reaction temperature increases, the 
conversion of C3H8O3 and the yield/selectivity to H2 improve. At lower temperatures, the steam 

Figure 7. (a) Total C3H8O3 conversion and C3H8O3 conversion into gaseous products, (b) H2 selectivity
and yield, (c) CO2 and CO selectivity, (d) CH4 selectivity (y-axis on a different scale), (e) H2/CO molar
ratio, and (f) CO/CO2 molar ratio (activity experiments).

From the results presented herein, and for all catalytic samples, it is obvious that the total
conversion of C3H8O3 is very high (above 75%) even at temperatures as low as 400 ◦C and reaches close
to 95% over 650 ◦C (Figure 7a). On the other hand, temperature dramatically affects the conversion
of C3H8O3 into gaseous products, especially between 450 and 650 ◦C; over 650 ◦C C3H8O3, gaseous
almost reaches a plateau (Figure 7a). However, it is hard to discern any significant differences between
the catalytic samples in terms of C3H8O3 conversion. These results are explained by the endothermic
nature of the GSR, which means that as the reaction temperature increases, the conversion of C3H8O3

and the yield/selectivity to H2 improve. At lower temperatures, the steam reforming reaction is limited,



Catalysts 2020, 10, 790 12 of 25

as the water–gas-shift reaction is more dominant however, at higher temperatures, the active sites are
able to cleave the C–C and/or C–O bonds in the C3H8O3 molecules through dehydrogenation on the
metal sites [30,92].

In terms of H2 selectivity and yield (Figure 7b), the Pt/CeAl catalyst shows significantly higher
H2 selectivity in comparison to the other samples, with values starting at ≈44% at 400 ◦C and rising
monotonically to ≈94% at 750 ◦C. This is also reflected in the values recorded for H2 yield, which rise
from ≈0.5 (400 ◦C) to ≈5.2 (750 ◦C) H2 mole/C3H8O3 mole. As mentioned above, according to
thermodynamics, the maximum attainable H2 yield is 6.2 [20]. Comparing the other two catalysts,
it seems that the Ir/CeAl is slightly more selective to H2 than the Pd/CeAl (for the Ir/CeAl, the SH2

ranges from ≈37 to 63% and the YH2 from 0.8 to 4.6, from 400 to 750 ◦C, respectively). These results
may indicate that the methanation reaction (at lower temperatures) and the RWGS reaction (at higher
temperatures), both leading to the consumption of hydrogen, are more dominant on the Ir/CeAl and
Pd/CeAl catalysts [93]. Moreover, the much improved performance of the Pt/CeAl may be related to:
(i) the increased number of Brønsted acid sites (as shown by the TPD experiments), which improved the
hydrogenolysis and dehydrogenation–dehydration of condensable intermediates, leading to enhanced
H2 production, and (ii) the smaller metal particle size (electron microscopy analysis), which favours
the cleavage of the C–C and C–O bonds in the C3H8O3 molecules. These findings are also in agreement
with reports concerning the steam reforming of ethanol, which suggest that Pt-based catalysts exhibit
higher activity and selectivity towards H2 production in comparison to other noble metals [94,95].

Significant differences can be observed between the catalytic samples also in terms of SCO2 and
SCO. Specifically, only the Pt/CeAl catalyst shows higher selectivity to CO2 as the temperature rises
(over 650 ◦C); in contrast for the Pd/CeAl, SCO and SCO2 remain almost steady despite the temperature
increase (with SCO significantly higher). As for the Ir/CeAl sample, despite progressively becoming
more selective towards CO2 as the temperature increases, it retains higher SCO values for the entire
temperature range. For example, at 650 ◦C, SCO2 follows the order Pt/CeAl (52%) > Pd/CeAl (18%) > Ir
CeAl (17%), while SCO is of the order Ir/CeAl ≈ Pd/CeAl (69%) > Pt/CeAl (41%). These results show
that the reverse water–gas-shift reaction probably dominates at high temperatures on the Pd and Ir
catalysts; in contrast, its prevalence appears to diminish at high temperatures for the Pt/CeAl sample.
Moreover, although CH4 production is minimal between 400–600 ◦C for all catalysts, it increases (albeit
it still remains small) for the Ir/CeAl and Pd/CeAl catalysts over 650 ◦C, pointing to the occurrence
of weak methanation activity over these two catalysts. The lack of CH4 over the Pt/CeAl may be
due to the occurrence of the methane steam reforming reaction, increasing H2 and CO2 production.
The above observations are also reflected on the H2/CO and CO/CO2 rations, which are higher and
lower, respectively, for the Pt/CeAl catalyst in comparison to the other two samples.

For the work presented herein, a variety of liquid products in trace amounts were identified (e.g.,
propanal, phenol, 1-propanol, glycol aldehyde), but only the main effluents, i.e., acrolein, acetaldehyde,
acetone, acetic acid, allyl alcohol and acetol, were quantified and the results are presented in Figure 8.
As can be observed, the catalysts were selective towards the majority of the liquid products quantified
between 400 and 500 ◦C and appear only less selective towards acetic acid and acrolein. Over 500 ◦C
selectivity towards acetic acid increased for all samples, while that acrolein was eliminated. Notably, the
Pt/CeAl sample stops producing liquid effluents over 650 ◦C and the Pd/CeAl over 700 ◦C; in contrast,
the Ir/CeAl produced allyl alcohol and acetic acid even at 750 ◦C.
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experiments).

The reaction pathway that has been proposed [47] over the active metals and basic sites begins
with the dehydrogenation of C3H8O3, followed by a dehydration step leading to pyruvaldehyde,
which may be converted to acetol (hydroxyacetone) through hydrogenation over the metallic sites
and lactic acid, which may be produced by the Cannizzaro rearrangement due to the catalyst basicity.
The decarbonylation of aldehyde from the cleavage of C–C bonds generates gaseous products.
With regard to the acid–base properties, it is usually accepted that an important parameter is the
balanced distribution of basic strength instead of only the strength of the acid sites. If this is not the
case, the selectivity and the stability may be strongly affected [29,96]. However, there is a clear lack of
fundamental studies regarding the basic properties in catalysed reactions (similar studies regarding
the acid properties are much more developed) and much still needs to be done in order to get a better
understanding of their effect on performance. Nonetheless, it is generally agreed that the strength
of basic sites required for base-catalyzed reactions, or a base-catalyzed reaction step as in glycerol
reforming, varies with the easiness of proton abstraction from the reactant molecule under the reaction
conditions employed [97].

From the results presented herein, it seems likely that dehydrogenation and hydrogenolysis
reactions led to the production of ethylene glycol, which was then converted to acetaldehyde and trace
amounts of glycol aldehyde and ethanol (Route I). Hydroxyacetone (acetol) was probably produced
through glycerol dehydration (Route II) and was then converted to form as main products acetic
acid, acetone and acetaldehyde, and a variety of products in trace amounts, such as, 1,2-propanediol,
propanal, 1-propanol, ethanol, formic acid, propionic acid, 2-cyclopentanone and phenol. This pathway
is caused by the activation of the terminal –OH of glycerol on the Lewis acid sites, which is represented by
the strong acid sites of the catalysts [98]. Glycerol dehydration also likely produced 3-hydroxypropanal
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(Route III), which then formed allyl alcohol, acetaldehyde and acrolein as main products, and possibly
formic acid and C2H4 (detected in trace amounts). This pathway involves the protonation of the
secondary -OH of glycerol to form acrolein, which is favored by Brønsted acidity mainly represented
by the moderate acid sites. A schematic representation of this plausible reaction pathway is been
provided in Figure 9.Catalysts 2020, 10, x FOR PEER REVIEW 14 of 25 
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It is noted that it is difficult to provide a direct comparison between the results presented herein
and those reported by other authors in the literature due to differences in experimental conditions and
catalyst systems under consideration. Buffoni et al. [45] examined the performance of 2 wt.% Pt catalysts
supported on SiO2 and SiO2 composite for the GSR (liquid products were not analyzed); for the latter
material, the authors reported an absence of surface acid sites and very small metallic particles (1.37 nm).
After 2 h time-on-stream experiments carried out at 450 ◦C, at a WHSV = 25.7 h−1 and a steam to
carbon ratio (S/C) = 4, the Pt/SiO2-C showed 70% total glycerol conversion, good selectivity towards H2

(43%), high SCO (81%), low SCO2 (13.8%) and low SCH4 (5.2%); H2 yield was equal to 2.1. The relatively
low H2/CO (1.9) and high CO/CO2 (4.0) ratios can probably be explained by an increased contribution
from the RWGS reaction. De Rezende et al. [47] prepared layered double hydroxides containing Mg
and Al to support 1 wt.% Pt catalysts. For the experimental work, the authors used a WGFR = 9:1
(molar), contact time of 511 h−1 and reported, at reaction temperature of 600 ◦C, relatively high SH2

(from 48.5 to 68.2% depending on the specific sample) and SCO2 (50.0–59.5%) and low to moderate
SCO (9.7–27.0%); the main liquid products obtained were acetol, piruvaldehyde, lactic acid, acetic acid,
acetaldehyde and formic acid. Pompeo et al. [49] compared the performance of Pt (1 and 2 wt.%) and
Ni (5 wt.%) catalysts supported on SiO2 at temperatures between 350 and 450 ◦C, using 10 wt.% of
glycerol in the feed. The authors, using a very low WHSV (from 0.44 to 1.66 min−1) reported that the
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1Pt catalyst showed 75% C3H8O3 conversion at 350 ◦C (84% for the 2Pt catalyst) and 100% XC3H8O3 at
450 ◦C; the major liquid products identified were acetaldehyde, 2-oxopropanal, hydroxy-acetaldehyde,
1-hydroxy-2-propanone, 1,2-ethanediol, 1,3-dihydroxy-2-propanone, and 2,3-dihydroxy-propanal.
Zhang et al. [56] used an Ir/CeO2 catalyst (2 wt.% Ir) and a high WGFR (2 vol%) and showed XC3H8O3

of 100% and SH2 = 85% at 400 ◦C at a gas hourly space velocity of 11,000 mL gcat
−1 h−1; liquid products

were not analyzed. Ebshish et al. [58] compared the performance of Ce/Al2O3 (1–10 wt.% Ce) and
Pd/Al2O3 catalysts (1 wt.% Pd), at 600 ◦C using a WGFR = 6:1 (molar) and reported that the highest YH2

was achieved by the noble metal catalyst (3.92 mole of H2 per mole of C3H8O3); the authors attributed
the good performance of the Pd catalyst to favourable lattice parameters.

2.3. Catalytic Stability

Figure 10 presents the results obtained during the time-on-stream experiments, which were
undertaken at 600 ◦C but at lower WGFR (9:1, molar) in comparison to the activity tests, i.e.,
the conditions chosen for the stability tests were more severe, in an effort to induce catalyst deactivation.

As can be observed from Figure 10a, all catalysts experience a loss in their ability to convert
glycerol during the first few hours of the experiments, but after approximately 4 h the values recorded
are rather stable. Although the XC3H8O3 is high for all catalysts, it dropped from 90% (1st measurement)
to 79% (8th h) for the Ir/CeAl sample, from 89% (1st measurement) to 75% (8th h) for the Pd/CeAl,
and from 93% (1st measurement) to 81% (8th h) for the Pt/CeAl. The loss in the ability to convert
C3H8O3 to gaseous products was more pronounced, dropping from 29% to 11% for the Ir/CeAl, 42% to
11% for the Pd/CeAl and 44% to 15% for the Pt/CeAl catalyst, between the first and last measurements,
respectively. However, all catalysts retain high and rather stable SH2 (Figure 10b) with the Pt/CeAl
clearly being more selective. In contrast, the YH2 is low for all catalysts with the values recorded at
the end of the stability tests approximately 0.5 for the Ir and Pd and 1.0 for the Pt catalyst. Moreover,
as the experiments progress, the Ir and Pd catalysts become progressively more selective to CO and
less selective to CO2; only the Pt catalyst retains rather stable SCO and SCO2 values. These observations
are also reflected when examining the H2/CO and CO/CO2 ratios (Figure 10e,f, respectively). Finally,
CH4 production was non-existent for all catalytic samples (Figure 10d). In terms of liquid products (not
shown herein), all catalysts retained rather stable selectivity values for the duration of the experiment.
These results indicate that the RWGS reaction, consuming H2 and producing CO, was the dominant
reaction at the temperature the experiments were undertaken.

In an excellent study, Wang et al. [99] performed a series of ageing experiments on an Ir/CeO2

catalyst for the steam reforming of ethanol. The authors reported fast initial deactivation, followed by
a levelling of performance with time, and were able to show that a significant loss of surface area and
micropososity occurred when CeO2 came into contact with steam; sintering and carbon deposition
occurred at a more gradual pace. In relation to the GSR, De Rezende et al. [47] reported very quick
deactivation for a series of PtMgAl-H (H for hydroxide), with the PtMg3Al-H showing a drop from
80% to 20% in XC3H8O3 during 250 min of time-on-stream carried out at 600 ◦C. XC3H8O3,gaseous was
also low, dropping from ≈45% to 25%. Similarly to the results reported herein, they also observed
that the selectivity to liquid products was stable during time-on-stream. Using TPO and TEM
experiments, the authors argued that the main cause for catalyst deactivation was carbon deposition.
Buffoni et al. [45] also reported sharp deactivation for Pt/SiO2 and Pt/C catalysts during time-on-stream;
only the Pt/SiO2-C catalyst retained stable XC3H8O3 values throughout, losing only 10% of its initial
activity after 66 h of time-on-stream. Moreover, the H2 yield of the Pt/SiO2 was approximately 1.5 at
the end of the experiment. The authors, using TGA/TPO, Raman and XPS, were able to show that
the cause of deactivation was carbon deposition and sintering of the metallic particles. Similarly,
Sad et al. [46] also reported decreased conversion of glycerol to gas products over time for Pt catalysts
on different supports (SiO2, MgO, Al2O3, TiO2), which was larger by an order of magnitude for the
more acidic supports.
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Figure 10. Time-on-stream experiments for all catalysts: (a) Total C3H8O3 conversion and C3H8O3 
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Figure 10. Time-on-stream experiments for all catalysts: (a) Total C3H8O3 conversion and C3H8O3

conversion into gaseous products, (b) H2 selectivity and yield, (c) CO2, CO selectivity (y-axis on a
different scale), (d) CH4 selectivity (y-axis on a different scale), (e) H2/CO molar ratio, (f) CO/CO2

molar ratio.

Figure 11 shows the TEM images and particle size distribution histograms obtained for the spent
Ir/CeAl (Figure 11a), Pd/CeAl (Figure 11b) and Pt/CeAl (Figure 11c) catalysts, after the time-on-stream
experiments. The improved resistance to sintering was shown by the Pt/CeAl catalyst, as the average
particle size was 1.7 ± 3.0 nm, quite close to that calculated for the reduced equivalent (1.1 ± 0.2 nm),
due to the stronger interaction of Pt with the CeO2–Al2O3 support (TPR measurements). The effect of
sintering was also rather limited on the Pd/CeAl catalyst, as the average particle size was found to
be 5.2 ± 1.9 nm (3.7 ± 2.0 nm for the reduced sample). However, the weak interaction of Ir with the
support—which may have resulted from the high calcination temperature (800 ◦C) used herein—led
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to extensive sintering of the Ir particles and a multimodal particle size distribution, with a mean
particle size value of 12.3 ± 4 (1.6 ± 0.4 nm for the reduced sample) and 62.6 ± 32.7 nm (11.8 ± 6.6 nm
for the reduced sample), thereby the number of active sites available to the reactants was greatly
reduced. A similar observation, i.e., extensive Ir sintering when high calcination temperatures were
used, was also made by Zou et al. [100] for Ir/CeO2 catalysts tested for the stem reforming of ethanol.
These large particles in turn led to the formation of fibrous carbon deposits, as can be clearly observed
from the images presented herein. In contrast, for the Pd and Pt catalysts, the coke deposited during
the stability tests appears mainly amorphous. Carbon nanotubes, on spent Ir catalysts, were also
observed in the works of Wang et al. [99] and Zou et al. [100]. As is well understood, carbon deposition
is a major issue for the GSR as it can occur over a variety of routes e.g., dehydration over the metallic
oxides leading to the formation of unsaturated hydrocarbon species or cracking of intermediates on
the catalysts′ surface [47].

Catalysts 2020, 10, x FOR PEER REVIEW 17 of 25 

 

temperature (800 °C) used herein—led to extensive sintering of the Ir particles and a multimodal 
particle size distribution, with a mean particle size value of 12.3 ± 4 (1.6 ± 0.4 nm for the reduced 
sample) and 62.6 ± 32.7 nm (11.8 ± 6.6 nm for the reduced sample), thereby the number of active sites 
available to the reactants was greatly reduced. A similar observation, i.e., extensive Ir sintering when 
high calcination temperatures were used, was also made by Zou et al. [100] for Ir/CeO2 catalysts 
tested for the stem reforming of ethanol. These large particles in turn led to the formation of fibrous 
carbon deposits, as can be clearly observed from the images presented herein. In contrast, for the Pd 
and Pt catalysts, the coke deposited during the stability tests appears mainly amorphous. Carbon 
nanotubes, on spent Ir catalysts, were also observed in the works of Wang et al. [99] and Zou et al. 
[100]. As is well understood, carbon deposition is a major issue for the GSR as it can occur over a 
variety of routes e.g., dehydration over the metallic oxides leading to the formation of unsaturated 
hydrocarbon species or cracking of intermediates on the catalysts′ surface [47]. 

0 50 100 150
0

5

10

15

20

25

30

35

40

N
um

be
r o

f n
an

op
ar

tic
le

s
Nanoparticle size, nm

Mean size:5.2±1.9 nm

Mean size:1.7±0.3 nm

b)

a)

c)

100 nm 50 nm

200 nm 50 nm

50 nm 20 nm

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

55

60

N
um

be
r o

f n
an

op
ar

tic
le

s

Nanoparticle size, nm

Mean size:
62.6±32.7 nm

0 5 10
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

N
um

be
r o

f n
an

op
ar

tic
le

s

Nanoparticle size, nm

Mean size:
12.3±4.4 nm

 
Figure 11. TEM images and particle size distribution of the spent: (a) Ir/CeAl, (b) Pd/CeAl, and (c) 
Pt/CeAl catalysts. 

3. Materials and Methods 

3.1. Catalyst Preparation 

The alumina support used herein was purchased from Akzo and was crashed and sieved to 
350–500 μm, as it was in pellet form. This was followed by calcination, which was carried out at 800 

Figure 11. TEM images and particle size distribution of the spent: (a) Ir/CeAl, (b) Pd/CeAl, and (c)
Pt/CeAl catalysts.



Catalysts 2020, 10, 790 18 of 25

3. Materials and Methods

3.1. Catalyst Preparation

The alumina support used herein was purchased from Akzo and was crashed and sieved to
350–500 µm, as it was in pellet form. This was followed by calcination, which was carried out at 800 ◦C
for 4 h, in ambient air. The CeO2–Al2O3 support was prepared by the incipient wetness impregnation
technique using Ce(NO3)3 6H2O (99.95%) aqueous solutions (Sigma Aldrich, St Luis, MS, USA), with a
defined concentration of CeO2 and a volume equal to the total pore volume of the impregnated Al2O3,
in order to obtain a nominal loading of 10 wt.% CeO2 in the final support. After the impregnation,
the support was dried in ambient air at 120 ◦C for 12 h followed by calcination in ambient air at 600 ◦C
for 5 h. The incipient wetness impregnation method was also employed for the incorporation of the
Pt, Pd and Ir active phases into the 10% CeO2–Al2O3 support using Pt(NH3)4 (NO3)2, IrCl3H2O and
PdCl2 precursors (Sigma Aldrich). The derived catalytic samples were dried in ambient air at 120 ◦C
overnight and finally calcined at 600 ◦C in ambient air for 5 h (these samples are denoted throughout
this manuscript as calcined catalysts). Reduced counterparts were also produced by in situ reduction
for 1 h at 800 ◦C in pure H2 flow (denoted as reduced catalysts). The catalysts are labelled as Ir/CeAl,
Pd/CeAl and Pt/CeAl.

3.2. Catalyst Characterization

The specific surface area, pore volume and pore size distribution of the catalysts were studied
using a high-resolution 3Flex Micromeritics (Atlanta, GA, USA) porosimeter. The catalysts′ crystalline
structure was determined by applying the X-ray diffraction (XRD) technique, using a ThermoAl
diffractometer (Waltham, MA, USA) at 40 kV and 30 mA with Cu Kα radiation (λ = 0.154178 nm).
Diffractograms were recorded in the 2θ = 2–70◦ range at a scanning rate of 0.04◦ over 1.2 min−1.
The reduction behavior and the Ni–support interaction were probed using H2 titration and a
temperature-programmed reduction technique (H2–TPR), whereas the acidity/basicity of the catalysts
was monitored using a temperature-programmed desorption (NH3-/CO2–TPD) experiments (Autochem
2920, Micromeritics, Atlanta, GA, USA) unit. Surface studies in terms of oxidation state and atomic
surface composition were performed using X-ray Photoelectron Spectroscopy (XPS), carried out
on a ThermoFisher Scientific Instruments (East Grinstead, UK) K-Alpha+ spectrometer using a
monochromated Al Kα X-ray source (hυ = 1486.6 eV). Charges on the surface were neutralized using
low energy electrons and argon ions in order to have a C 1s binding energy for adventitious carbon of
284.8 eV. The spectra were fitted using CasaXPS (v2.3.17 PR1.1) and Scofield sensitivity factors with an
energy exponent of −0.6. Energy dispersive X-ray spectroscopy (EDS) and high angle annular dark
field scanning transmission electron microscopy (STEM–HAADF) were performed on a Tecnai G2-F30
Field Emission Gun microscope (Waltham, MA, USA) with a super-twin lens and 0.2 nm point-to-point
resolution and 0.1 nm line resolution operated at 300.

3.3. Catalytic Tests

The GSR was carried out at atmospheric pressure, using a continuous flow fixed-bed reactor.
A detailed description of the experimental set up can be found in previous publications by our group [2].
In synopsis, the work carried out herein necessitated the use of both liquid and gaseous streams as
feeds, and for this reason the experimental rig consisted of two vaporizers and a pre-heater before
the reactor and a condenser after it. The vaporizers, pre-heater and reactor were placed into electrical
ovens and regulated with programmed-temperature controllers. The gases at the outlet were forced
through a cold trap in order to capture the liquid products. The glycerol used had 99.5% purity and
was supplied by Sigma Aldrich. Catalytic activation was carried out in situ (prior to catalytic testing),
under a flow (100 Nml min−1) of high purity H2 (5.0) at 800 ◦C for 1h.

The activity and selectivity of the catalytic samples was examined in the temperature range of
40 ◦C (activity experiments) using an aqueous solution of 0.12 Nml min−1 (20 v.v.% C3H8O3 in H2O)
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and a gas stream of 38 Nml min−1 of He (99.999%). Thus, the gas mixture at inlet of the reactor
consisted of: 73% H2O, 4% C3H8O3 and 23% He. This corresponded to Weight Hourly Space Velocity
(WHSV) equal to 50,000 NmL g−1 h−1. Catalytic stability (time-on-stream experiments) was assessed at
600 ◦C using a higher concentration of glycerol in the liquid stream, set at 31 v.v.% C3H8O3 (63% H2O,
7% C3H8O3, 30% He), but the WHSV was kept at 50,000 NmL g−1 h−1. These experiments were carried
out for 8 h and gaseous products were measured every hour and liquid products every 4 h.

The liquid products were analysed via a combination of Gas Chromatography (Agilent 7890A)
and Mass Spectroscopy (Agilent 5975C). The gaseous products were determined via an Agilent gas
chromatographer (7890A). Detailed information regarding the analysis of liquid and gaseous products
can be found at ref. [19].

3.4. Reaction Metrics

The investigation of catalytic performance necessitated the calculation of the total glycerol
conversion, the conversion of glycerol into gaseous products, and the determination of the H2 yield
and selectivities to H2, CH4, CO2 and CO. For the calculations, Equations (13)–(17) shown below were
used. The selectivity to acetone [(CH3)2CO], acetaldehyde (C2H4O), acetol (C3H6O2), allyl alcohol
(CH2=CHCH2OH), acrolein (C3H4O) and acetic acid (C2H4O) was calculated based on Equation (18):

%Glycerol conversion(total conversion) =

(
Glycerolin −Glycerolout

Glycerolin

)
× 100 (13)

%Glycerol conversion(gaseous products) =

(
C atoms in the gas products

total C atoms in the f eedstock

)
× 100 (14)

H2 yield =
H2 mol produced

mol o f glycerol in the f eedstock
(15)

%H2 selectivity =

(
H2 mol produced

C atoms produced in the gas phase

)
×

( 1
RR

)
× 100 (16)

% Selectivity o f i =
(

C atoms in species i
C atoms produced in the gas phase

)
× 100 (17)

% Selectivity o f i′ =
(

C atoms in species i′

C atoms produced in the liquid phase

)
× 100 (18)

where, RR is defined as the ratio of mol of H2 to CO2 formed, i.e., the reforming ratio (7/3), species i
refers to CO2, CO and CH4 and species i′ refers to acetol, acetone, allyl alcohol, acetaldehyde, acrolein
and acetic acid.

4. Conclusions

The rapid development of the biodiesel industry means that the utilization of its main by-product,
i.e., glycerol is a matter that needs to be urgently resolved. An attractive possibility is provided by
glycerol′s energetic valorisation via the steam reforming reaction for the production of H2, an efficient
energy carrier that can provide clean power in stationary, portable and transport applications. In the
work presented herein, Al2O3 and CeO2–Al2O3 (10 wt.%) were used as supporting material for Ir,
Pd and Pt catalysts, which were prepared by the incipient wetness impregnation technique; calcination
was carried out in ambient air at 800 ◦C, while activation was carried out in situ under a pure H2 flow,
also at 800 ◦C. The catalysts were characterised using N2 adsorption–desorption, XRD, TPR, TPD, XPS
and TEM analysis. The catalytic experiments aimed at identifying the effect of temperature on the total
conversion of glycerol, on the conversion of glycerol to gaseous products, the selectivity towards the
gaseous products (H2, CO2, CO, CH4) and the determination of the H2/CO and CO/CO2 molar ratios.
The main liquid effluents produced during the reaction were quantified. Time-on-stream experiments
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were conducted for 8h at harsh reaction conditions in order to induce catalyst deactivation. The results
revealed that the Pt/CeAl catalyst was more selective towards H2, which can be related to its increased
number of Brønsted acid sites, which improved the hydrogenolysis and dehydrogenation–dehydration
of condensable intermediates. The time-on-stream experiments, undertaken at low Water–Glycerol
Feed Ratios (WGFR), showed gradual deactivation for all catalysts. This is likely due to the dehydration
reaction, which leads to the formation of unsaturated hydrocarbon species and eventually to carbon
deposition. The weak metal–support interaction shown for the Ir/CeAl catalyst also led to pronounced
sintering of the metallic particles.
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