133 research outputs found

    The Genetic Basis of Heterosis: Multiparental Quantitative Trait Loci Mapping Reveals Contrasted Levels of Apparent Overdominance Among Traits of Agronomical Interest in Maize (Zea mays L.)

    Get PDF
    Understanding the genetic bases underlying heterosis is a major issue in maize (Zea mays L.). We extended the North Carolina design III (NCIII) by using three populations of recombinant inbred lines derived from three parental lines belonging to different heterotic pools, crossed with each parental line to obtain nine families of hybrids. A total of 1253 hybrids were evaluated for grain moisture, silking date, plant height, and grain yield. Quantitative trait loci (QTL) mapping was carried out on the six families obtained from crosses to parental lines following the “classical” NCIII method and with a multiparental connected model on the global design, adding the three families obtained from crosses to the nonparental line. Results of the QTL detection highlighted that most of the QTL detected for grain yield displayed apparent overdominance effects and limited differences between heterozygous genotypes, whereas for grain moisture predominance of additive effects was observed. For plant height and silking date results were intermediate. Except for grain yield, most of the QTL identified showed significant additive-by-additive epistatic interactions. High correlation observed between heterosis and the heterozygosity of hybrids at markers confirms the complex genetic basis and the role of dominance in heterosis. An important proportion of QTL detected were located close to the centromeres. We hypothesized that the lower recombination in these regions favors the detection of (i) linked QTL in repulsion phase, leading to apparent overdominance for heterotic traits and (ii) linked QTL in coupling phase, reinforcing apparent additive effects of linked QTL for the other traits

    Systematic design for trait introgression projects

    Get PDF
    We demonstrate an innovative approach for designing Trait Introgression (TI) projects based on optimization principles from Operations Research. If the designs of TI projects are based on clear and measurable objectives, they can be translated into mathematical models with decision variables and constraints that can be translated into Pareto optimality plots associated with any arbitrary selection strategy. The Pareto plots can be used to make rational decisions concerning the trade-offs between maximizing the probability of success while minimizing costs and time. The systematic rigor associated with a cost, time and probability of success (CTP) framework is well suited to designing TI projects that require dynamic decision making. The CTP framework also revealed that previously identified ‘best’ strategies can be improved to be at least twice as effective without increasing time or expenses

    Light interception principally drives the understory response to boxelder invasion in riparian forests

    Get PDF
    Since several decades, American boxelder (Acer negundo) is replacing white willow (Salix alba) riparian forests along southern European rivers. This study aims to evaluate the consequences of boxelder invasion on understory community in riparian areas. We determined the understory species richness, composition and biomass in boxelder and white willow stands located in three riparian forests, representative of three rivers with distinct hydrological regimes. We investigated correlation of these variables to soil moisture and particle size, main soil nutrient stocks, potential nitrification and denitrification, tree canopy cover and photosynthetic active radiation (PAR) at the ground level. A greenhouse experiment was then conducted to identify the causal factors responsible for changes in the understory. The effect of soil type, PAR level and water level on the growth and the biomass production of Urtica dioica were examined. A lower plant species richness and biomass, and a modification of community composition were observed for boxelder understory in all sites, regardless of their environmental characteristics. The strongest modification that follows boxelder invasion was the decline in U. dioica, the dominant species of the white willow forest understory. These differences were mainly correlated with a lower incident PAR under boxelder canopy. The greenhouse experiment identified PAR level as the main factor responsible for the changes in U. dioica stem number and biomass. Our results indicate that adult boxelder acts as an ecosystem engineer that decreases light availability. The opportunistic invasion by boxelder leads to important understory changes, which could alter riparian ecosystem functioning

    Taxa-area relationship of aquatic fungi on deciduous leaves

    Get PDF
    One of the fundamental patterns in macroecology is the increase in the number of observed taxa with size of sampled area. For microbes, the shape of this relationship remains less clear. The current study assessed the diversity of aquatic fungi, by the traditional approach based on conidial morphology (captures reproducing aquatic hyphomycetes) and next generation sequencing (NGS; captures other fungi as well), on graded sizes of alder leaves (0.6 to 13.6 cm2). Leaves were submerged in two streams in geographically distant locations: the Oliveira Stream in Portugal and the Boss Brook in Canada. Decay rates of alder leaves and fungal sporulation rates did not differ between streams. Fungal biomass was higher in Boss Brook than in Oliveira Stream, and in both streams almost 100% of the reads belonged to active fungal taxa. In general, larger leaf areas tended to harbour more fungi, but these findings were not consistent between techniques. Morphospecies-based diversity increased with leaf area in Boss Brook, but not in Oliveira Stream; metabarcoding data showed an opposite trend. The higher resolution of metabarcoding resulted in steeper taxa-accumulation curves than morphospecies-based assessments (fungal conidia morphology). Fungal communities assessed by metabarcoding were spatially structured by leaf area in both streams. Metabarcoding promises greater resolution to assess biodiversity patterns in aquatic fungi and may be more accurate for assessing taxa-area relationships and local to global diversity ratios.This work was supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569), funded by national funds through the Portuguese Foundation for Science and Technology (FCT) I.P. (http://www.fct.pt/) and by the ERDF through the COMPETE2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) and by the project PTDC/AAC-AMB/117068/2010, funded by national funds through FCT I.P. and the European Regional Development Funds through the Operational Competitiveness Program (FEDER-COMPETE). Support from FCT to SD (SFRH/BPD/47574/2008 and SFRH/BPD/109842/2015) and from NSERC Discovery grant program (http://www.nserc-crsng.gc.ca/index_eng.asp) to FB is also acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Conventional and Dense Gas Techniques for the Production of Liposomes: A Review

    Get PDF
    The aim of this review paper is to compare the potential of various techniques developed for production of homogenous, stable liposomes. Traditional techniques, such as Bangham, detergent depletion, ether/ethanol injection, reverse-phase evaporation and emulsion methods, were compared with the recent advanced techniques developed for liposome formation. The major hurdles for scaling up the traditional methods are the consumption of large quantities of volatile organic solvent, the stability and homogeneity of the liposomal product, as well as the lengthy multiple steps involved. The new methods have been designed to alleviate the current issues for liposome formulation. Dense gas liposome techniques are still in their infancy, however they have remarkable advantages in reducing the use of organic solvents, providing fast, single-stage production and producing stable, uniform liposomes. Techniques such as the membrane contactor and heating methods are also promising as they eliminate the use of organic solvent, however high temperature is still required for processing
    corecore