4 research outputs found

    0307 : QSOX1 has a protective role in the myocardium face to acute stress

    Get PDF
    IntroductionQSOX1 was identified as a plasma biomarker of acute heart failure (AHF). QSOX1 being a sulfhydryl oxidase, our aim was to decipher the role of QSOX1 in the heart face to an AHF event.MethodsAHF was provoked by IP injections of Isoproterenol (ISO, 300mg/kg/12h) for 2 days in mice (C57Bl/6 J) whereas control (C) received NaCl 9‰. Mice were killed at day 3, after echocardiography. QSOX1 KO (C57Bl/6 J) mice were generated using a QSOX1tm1a embryonic stem cell clone (KOMP). The KO construct contains a promoter-less lacZ gene under the control of the QSOX1 regulatory sequences. The mRNA levels were analyzed by RT-qPCR. The cellular level of oxidative stress was detected by using DHE. Fibrosis was analysed by Sirius red and collagen mRNA.ResultsAt baseline QSOX1-/- adult mice did not display any cardiac or vascular phenotype. After ISO, lacZ expression dramatically increased in QSOX1+/- hearts with the strongest β-galactosidase staining in the atria. In mice receiving ISO, a pulmonary congestion, BNP (x2 p<0.001) and CD68 (x3, p<0.001) increases were observed only in QSOX1-/-, whereas Galectin 3 increased in both groups. After ISO, the severe cardiac dysfunction in QSOX1-/- mice was associated with signs of enhanced oxidative stress (DHE staining p<0.0001). An early fibrosis was observed by Sirius red analysis and associated with an increase of collagen 1 and 3 mRNAs without difference between WT and QSOX1-/- mice.ConclusionWe provided evidence that the absence of QSOX1 leads to a more serious cardiac dysfunction in response to acute cardiac stress by ISO than in WT counterparts. Hence, our data indicated that QSOX1 protects the heart in response to acute stress

    Data from: Habitat specialization predicts genetic response to fragmentation in tropical birds

    No full text
    Habitat fragmentation is one of the most severe threats to biodiversity as it may lead to changes in population genetic structure, with ultimate modifications of species evolutionary potential and local extinctions. Nonetheless, fragmentation does not equally affect all species and identifying which ecological traits are related to species sensitivity to habitat fragmentation could help prioritization of conservation efforts. Despite the theoretical link between species ecology and extinction proneness, comparative studies explicitly testing the hypothesis that particular ecological traits underlies species-specific population structure are rare. Here, we used a comparative approach on eight bird species, co-occurring across the same fragmented landscape. For each species, we quantified relative levels of forest specialization and genetic differentiation among populations. To test the link between forest specialization and susceptibility to forest fragmentation, we assessed species responses to fragmentation by comparing levels of genetic differentiation between continuous and fragmented forest landscapes. Our results revealed a significant and substantial population structure at a very small spatial scale for mobile organisms such as birds. More importantly, we found that specialist species are more affected by forest fragmentation than generalist ones. Finally, our results suggest that even a simple habitat specialization index can be a satisfying predictor of genetic and demographic consequences of habitat fragmentation, providing a reliable practical and quantitative tool for conservation biology
    corecore