101 research outputs found

    Mitochondrial respiratory chain dysfunction—A hallmark pathology of idiopathic Parkinson’s disease?

    Get PDF
    Parkinson’s disease (PD) is the most common age-dependent neurodegenerative synucleinopathy. Loss of dopaminergic neurons of the substantia nigra pars compacta, together with region- and cell-specific aggregations of α-synuclein are considered main pathological hallmarks of PD, but its etiopathogenesis remains largely unknown. Mitochondrial dysfunction, in particular quantitative and/or functional deficiencies of the mitochondrial respiratory chain (MRC), has been associated with the disease. However, after decades of research in this field, the pervasiveness and anatomical extent of MRC dysfunction in PD remain largely unknown. Moreover, it is not known whether the observed MRC defects are pathogenic, compensatory responses, or secondary epiphenomena. In this perspective, we give an overview of current evidence for MRC dysfunction in PD, highlight pertinent knowledge gaps, and propose potential strategies for future research.publishedVersio

    A nationwide study of the incidence, prevalence and mortality of Parkinson’s disease in the Norwegian population

    Get PDF
    Epidemiological studies of Parkinson’s disease (PD) show variable and partially conflicting findings with regard to incidence, prevalence, and mortality. These differences are commonly attributed to technical and methodological factors, including small sample sizes, differences in diagnostic practices, and population heterogeneity. We leveraged the Norwegian Prescription Database, a population-based registry of drug prescriptions dispensed from Norwegian pharmacies to assess the incidence, prevalence, and mortality of PD in Norway. The diagnosis of PD was defined based on the prescription of dopaminergic drugs for the indication of PD over a continuous time. During 2004–2017, 12,229 males and 9831 females met our definition for PD diagnosis. PD prevalence increased over the observation period, with larger changes observed in the older age groups. Incidence and prevalence of PD increased with age, peaking at 85 years. The male/female prevalence ratio was 1.5 across all ages, whereas the incidence ratio increased with age, from 1.4 in those 60 years, to 2.03 among those >90 years. While PD mortality was generally higher than that of the general population, mortality odds ratios decreased with age, approaching 1.0 among individuals >90 years old. When adjusted for the sex-specific mortality of the general population, the mortality among females with PD was equal to or higher than the mortality among males with PD. Our findings demonstrate that the epidemiological features of PD, including sex-differences, are age and time-period dependent and indicate that sex differences in PD mortality are unlikely to stem from disease-specific negative impact of survival in males.publishedVersio

    Real-World Dosing of OnabotulinumtoxinA and IncobotulinumtoxinA for Cervical Dystonia and Blepharospasm: Results from TRUDOSE and TRUDOSE II

    Get PDF
    The real-world use of onabotulinumtoxinA and incobotulinumtoxinA for cervical dystonia and blepharospasm treatment was assessed in two separate retrospective studies using identical protocols (TRUDOSE and TRUDOSE II). The studies were conducted in Mexico, Norway, and United Kingdom and designed to evaluate dose utilization of the two botulinum toxins in clinical practice. Eighty-three patients treated with both onabotulinumtoxinA and incobotulinumtoxinA for ≥2 years for each botulinum toxin were included, (52, cervical dystonia; 31, blepharospasm). All patients switched from onabotulinumtoxinA to incobotulinumtoxinA for administrative/financial reasons. A range of dose ratios (incobotulinumtoxinA to onabotulinumtoxinA) was reported; with the majority of dose ratios being >1. The mean dose ratio was >1 regardless of the study site or underlying clinical condition. The inter-injection interval was significantly longer for onabotulinumtoxinA versus incobotulinumtoxinA when assessed for all patients (15.5 vs. 14.3 weeks; p = 0.006), resulting in fewer onabotulinumtoxinA treatments over the study time period. Consistent with product labeling, no single fixed-dose ratio exists between incobotulinumtoxinA and onabotulinumtoxinA. The dosage of each should be individualized based on patient needs and used as per product labeling. These real-world utilization data may have pharmacoeconomic implications.publishedVersio

    DNA Methylation Age Acceleration Is Not Associated with Age of Onset in Parkinson's Disease

    Get PDF
    Background Epigenetic clocks using DNA methylation (DNAm) to estimate biological age have become popular tools in the study of neurodegenerative diseases. Notably, several recent reports have shown a strikingly similar inverse relationship between accelerated biological aging, as measured by DNAm, and the age of onset of several neurodegenerative disorders, including Parkinson's disease (PD). Common to all of these studies is that they were performed without control subjects and using the exact same measure of accelerated aging: DNAm age minus chronological age. Objective We aimed to assess the validity of these findings in PD, using the same dataset as in the original study, blood DNAm data from the Parkinson's Progression Markers Initiative cohort, but also including control samples in the analyses. Methods We replicated the analyses and findings of the previous study and then reanalyzed the dataset incorporating control samples to account for underlying age-related biases. Results Our reanalysis shows that there is no correlation between age of onset and DNAm age acceleration. Conversely, there is a pattern of overestimating DNAm age in younger and underestimating DNAm age in older individuals in the dataset that entirely explains the previously reported association. Conclusions Our findings refute the previously reported inverse relationship between DNAm age acceleration and age of onset in PD. We show that these findings are fully accounted for by an expected over/underestimation of DNAm age in younger/older individuals. Furthermore, this effect is likely to be responsible for nearly identical findings reported in other neurodegenerative diseases. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.publishedVersio

    PNKP Mutations Identified by Whole-Exome Sequencing in a Norwegian Patient with Sporadic Ataxia and Edema

    Get PDF
    We identified PNKP mutations in a Norwegian woman with AOA. This patient had the typical findings with cognitive dysfunction, peripheral neuropathy, cerebellar dysarthria, horizontal nystagmus, oculomotor apraxia, and severe truncal and appendicular ataxia. In addition, she had hypoalbuminemia and massive lower limb edema which showed some improvement with treatment. Exome sequencing identified two heterozygous mutations, one in exon 14 (c.1196T>C, p.Leu399Pro) and one in exon 16 (c.1393_1396del, p.Glu465*). This is the first non-Portuguese patient with AOA due to PNKP mutations and provides independent verification that PNKP mutations cause AOA.publishedVersio

    Early Forms of α-Synuclein Pathology Are Associated with Neuronal Complex I Deficiency in the Substantia Nigra of Individuals with Parkinson’s Disease

    Get PDF
    Idiopathic Parkinson’s disease (iPD) is characterized by degeneration of the dopaminergic substantia nigra pars compacta (SNc), typically in the presence of Lewy pathology (LP) and mitochondrial respiratory complex I (CI) deficiency. LP is driven by α-synuclein aggregation, morphologically evolving from early punctate inclusions to Lewy bodies (LBs). The relationship between α-synuclein aggregation and CI deficiency in iPD is poorly understood. While studies in models suggest they are causally linked, observations in human SNc show that LBs preferentially occur in CI intact neurons. Since LBs are end-results of α-synuclein aggregation, we hypothesized that the relationship between LP and CI deficiency may be better reflected in neurons with early-stage α-synuclein pathology. Using quadruple immunofluorescence in SNc tissue from eight iPD subjects, we assessed the relationship between neuronal CI or CIV deficiency and early or late forms of LP. In agreement with previous findings, we did not observe CI-negative neurons with late LP. In contrast, early LP showed a significant predilection for CI-negative neurons (p = 6.3 × 10−5). CIV deficiency was not associated with LP. Our findings indicate that early α-syn aggregation is associated with CI deficiency in iPD, and suggest a double-hit mechanism, where neurons exhibiting both these pathologies are selectively lost.publishedVersio

    Ultra-deep whole genome bisulfite sequencing reveals a single methylation hotspot in human brain mitochondrial DNA

    Get PDF
    While DNA methylation is established as a major regulator of gene expression in the nucleus, the existence of mitochondrial DNA (mtDNA) methylation remains controversial. Here, we characterized the mtDNA methylation landscape in the prefrontal cortex of neurological healthy individuals (n=26) and patients with Parkinson’s disease (n=27), using a combination of whole-genome bisulphite sequencing (WGBS) and bisulphite-independent methods. Accurate mtDNA mapping from WGBS data required alignment to an mtDNA reference only, to avoid misalignment to nuclear mitochondrial pseudogenes. Once correctly aligned, WGBS data provided ultra-deep mtDNA coverage (16,723 ± 7,711) and revealed overall very low levels of cytosine methylation. The highest methylation levels (5.49 ± 0.97%) were found on CpG position m.545, located in the heavy-strand promoter 1 region. The m.545 methylation was validated using a combination of methylation-sensitive DNA digestion and quantitative PCR analysis. We detected no association between mtDNA methylation profile and Parkinson’s disease. Interestingly, m.545 methylation correlated with the levels of mtDNA transcripts, suggesting a putative role in regulating mtDNA gene expression. In addition, we propose a robust framework for methylation analysis of mtDNA from WGBS data, which is less prone to false-positive findings due to misalignment of nuclear mitochondrial pseudogene sequences.publishedVersio

    Mitochondrial respiratory chain deficiency correlates with the severity of neuropathology in sporadic Creutzfeldt-Jakob disease

    Get PDF
    Mitochondrial dysfunction has been implicated in multiple neurodegenerative diseases but remains largely unexplored in Creutzfeldt-Jakob disease. Here, we characterize the mitochondrial respiratory chain at the individual neuron level in the MM1 and VV2 common molecular subtypes of sporadic Creutzfeldt-Jakob disease. Moreover, we investigate the associations between the mitochondrial respiratory chain and neuropathological markers of the disease. Brain tissue from individuals with sporadic Creutzfeldt-Jakob disease and age-matched controls were obtained from the brain collection of the Austrian Creutzfeldt-Jakob Surveillance. The mitochondrial respiratory chain was studied through a dichotomous approach of immunoreactivities in the temporal cortex and the hippocampal subregions of CA4 and CA3. We show that profound deficiency of all mitochondrial respiratory complexes (I-V) occurs in neurons of the severely affected temporal cortex of patients with Creutzfeldt-Jakob disease. This deficiency correlates strongly with the severity of neuropathological changes, including vacuolation of the neuropil, gliosis and disease associated prion protein load. Respiratory chain deficiency is less pronounced in hippocampal CA4 and CA3 regions compared to the temporal cortex. In both areas respiratory chain deficiency shows a predilection for the MM1 molecular subtype of Creutzfeldt-Jakob disease. Our findings indicate that aberrant mitochondrial respiration could be involved early in the pathogenesis of sporadic Creutzfeldt-Jakob disease and contributes to neuronal death, most likely via ATP depletion. Based on these results, we propose that the restricted MRI diffusion profile seen in the brain of patients with sporadic Creutzfeldt-Jakob disease might reflect cytotoxic changes due to neuronal respiratory chain failure and ATP loss.publishedVersio

    Mitochondrial DNA depletion in sporadic inclusion body myositis

    Get PDF
    Sporadic inclusion body myositis (sIBM) is a late onset disorder of unkown aetiology. Mitochondrial changes such as cytochrome oxidase deficient fibres are a well recognised feature and mitochondrial DNA (mtDNA) deletions have also been reported, but not consistently. Since mtDNA deletions are not present in all cases, we investigated whether other types of mtDNA abnormality were responsible for the mitochondrial changes. We studied 9 patients with sIBM. To control for fibre loss or replacement with inflammatory cells, we compared sIBM patients with necrotising myopathy (n = 4) as well as with healthy controls. Qualitative anlysis for mtDNA deletions and quantitative measurement of mtDNA copy number showed that muscle from patients with sIBM contained on average 67% less mtDNA than healthy controls (P = 0.001). The level of mtDNA was also significantly depleted in sIBM when compared to necrotising myopathy. No significant difference in copy number was seen in patients with necrotising myopathy compared to controls. Deletions of mtDNA were present in 4 patients with sIBM, but not all. Our findings suggest that mtDNA depletion is a more consistent finding in sIBM, and one that may be implicated in the pathogenesis of the disease.publishedVersio

    Using urine to diagnose large-scale mtDNA deletions in adult patients

    Get PDF
    Objective: The aim of this study was to evaluate if urinary sediment cells offered a robust alternative to muscle biopsy for the diagnosis of single mtDNA deletions. Methods: Eleven adult patients with progressive external ophthalmoplegia and a known single mtDNA deletion were investigated. Urinary sediment cells were used to isolate DNA, which was then subjected to long-range polymerase chain reaction. Where available, the patient's muscle DNA was studied in parallel. Breakpoint and thus deletion size were identified using both Sanger sequencing and next generation sequencing. The level of heteroplasmy was determined using quantitative polymerase chain reaction. Results: We identified the deletion in urine in 9 of 11 cases giving a sensitivity of 80%. Breakpoints and deletion size were readily detectable in DNA extracted from urine. Mean heteroplasmy level in urine was 38% +/- 26 (range 8 - 84%), and 57% +/- 28 (range 12 - 94%) in muscle. While the heteroplasmy level in urinary sediment cells differed from that in muscle, we did find a statistically significant correlation between these two levels (R = 0.714, P = 0.031(Pearson correlation)). Interpretation: Our findings suggest that urine can be used to screen patients suspected clinically of having a single mtDNA deletion. Based on our data, the use of urine could considerably reduce the need for muscle biopsy in this patient group.Peer reviewe
    • …
    corecore