275 research outputs found

    When and Where to Step: Terrain-Aware Real-Time Footstep Location and Timing Optimization for Bipedal Robots

    Full text link
    Online footstep planning is essential for bipedal walking robots, allowing them to walk in the presence of disturbances and sensory noise. Most of the literature on the topic has focused on optimizing the footstep placement while keeping the step timing constant. In this work, we introduce a footstep planner capable of optimizing footstep placement and step time online. The proposed planner, consisting of an Interior Point Optimizer (IPOPT) and an optimizer based on Augmented Lagrangian (AL) method with analytical gradient descent, solves the full dynamics of the Linear Inverted Pendulum (LIP) model in real time to optimize for footstep location as well as step timing at the rate of 200~Hz. We show that such asynchronous real-time optimization with the AL method (ARTO-AL) provides the required robustness and speed for successful online footstep planning. Furthermore, ARTO-AL can be extended to plan footsteps in 3D, allowing terrain-aware footstep planning on uneven terrains. Compared to an algorithm with no footstep time adaptation, our proposed ARTO-AL demonstrates increased stability in simulated walking experiments as it can resist pushes on flat ground and on a 1010^{\circ} ramp up to 120 N and 100 N respectively. For the video, see https://youtu.be/ABdnvPqCUu4. For code, see https://github.com/WangKeAlchemist/ARTO-AL/tree/master.Comment: 32 pages, 15 figures. Submitted to Robotics and Autonomous System

    Placental growth factor testing for suspected pre‐eclampsia: a cost‐effectiveness analysis

    Get PDF
    Objective To calculate the cost‐effectiveness of implementing PlGF testing alongside a clinical management algorithm in maternity services in the UK, compared with current standard care. Design Cost‐effectiveness analysis. Setting Eleven maternity units participating in the PARROT stepped‐wedge cluster‐randomised controlled trial. Population Women presenting with suspected pre‐eclampsia between 20+0 and 36+6 weeks’ gestation. Methods Monte Carlo simulation utilising resource use data and maternal adverse outcomes. Main outcome measures Cost per maternal adverse outcome prevented. Results Clinical care with PlGF testing costs less than current standard practice and resulted in fewer maternal adverse outcomes. There is a total cost‐saving of UK£149 per patient tested, when including the cost of the test. This represents a potential cost‐saving of UK£2,891,196 each year across the NHS in England. Conclusions Clinical care with PlGF testing is associated with the potential for cost‐savings per participant tested when compared with current practice via a reduction in outpatient attendances, and improves maternal outcomes. This economic analysis supports a role for implementation of PlGF testing in antenatal services for the assessment of women with suspected pre‐eclampsia. Tweetable abstract Placental growth factor testing for suspected pre‐eclampsia is cost‐saving and improves maternal outcomes

    Stabilization of angiotensin-(1-7) by key substitution with a cyclic non-natural amino acid

    Get PDF
    Angiotensin-(1-7) [Ang-(1-7)], a heptapeptide hormone of the renin-angiotensin-aldosterone system (RAAS), is a promising candidate as a treatment for cancer that reflects its antiproliferative and anti-angiogenic properties. However, the peptide’s therapeutic potential is limited by the short half-life and low bioavailability resulting from rapid enzymatic metabolism by peptidases including angiotensin-converting enzyme (ACE) and dipeptidyl peptidase 3 (DPP 3). We report the facile assembly of three novel Ang-(1-7) analogues by solid-phase peptide synthesis which incorporates the cyclic non-natural δ-amino acid ACCA. The analogues containing the ACCA substitution at the site of ACE cleavage exhibit complete resistance to human ACE, while substitution at the DDP3 cleavage site provided stability against DPP 3 hydrolysis. Furthermore, the analogues retain the anti-proliferative properties of Ang-(1-7) against the 4T1 and HT-1080 cancer cell lines. These results suggest that ACCA-substituted Ang-(1-7) analogues which show resistance against proteolytic degradation by peptidases known to hydrolyze the native heptapeptide may be novel therapeutics in the treatment of cancer

    Peptidyl-prolyl cis-trans isomerases (immunophilins) and their roles in parasite biochemistry, host-parasite interaction and antiparasitic drug action.

    Get PDF
    Immunophilin is the collective name given to the cyclophilin and FK506-binding protein (FKBP) families. As the name suggests, these include the major binding proteins of certain immunosuppressive drugs: cyclophilins for the cyclic peptide cyclosporin A and FKBPs for the macrolactones FK506 and rapamycin. Both families, although dissimilar in sequence, possess peptidyl-prolyl <i>cis-trans</i> isomerase activity in vitro and can play roles in protein folding and transport, RNA splicing and the regulation of multiprotein complexes in cells. In addition to enzymic activity, many immunophilins act as molecular chaperones. This property may be conferred by the isomerase domain and/or by additional domains. Recent years have seen a great increase in the number of known immunophilin genes in parasitic protozoa and helminths and in many cases their products have been characterized biochemically and their temporal and spatial expression patterns have been examined. Some of these genes represent novel types: one example is a <i>Toxoplasma gondii</i> gene encoding a protein with both cyclophilin and FKBP domains. Likely roles in protein folding and oligomerisation, RNA splicing and sexual differentiation have been suggested for parasite immunophilins. In addition, unexpected roles in parasite virulence (Mip FKBP of <i>Trypanosoma cruzi</i>) and host immuno-modulation (e.g. 18-kDa cyclophilin of <i>Toxoplasma gondii</i>) have been established. Furthermore, in view of the potent antiparasitic activities of cyclosporins, macrolactones and nonimmunosuppressive derivatives of these compounds, immunophilins may mediate drug action and/or may themselves represent potential drug targets. Investigation of the mechanisms of action of these agents may lead to the design of potent and selective antimalarial and other antiparasitic drugs. This review discusses the properties of immunophilins in parasites and the 'animal model' <i>Caenorhabditis elegans</i> and relates these to our understanding of the roles of these proteins in cellular biochemistry, host-parasite interaction and the antiparasitic mechanisms of the drugs that bind to them

    Placental growth factor testing to assess women with suspected pre-eclampsia: a multicentre, pragmatic, stepped-wedge cluster-randomised controlled trial

    Get PDF
    BACKGROUND: Previous prospective cohort studies have shown that angiogenic factors have a high diagnostic accuracy in women with suspected pre-eclampsia, but we remain uncertain of the effectiveness of these tests in a real-world setting. We therefore aimed to determine whether knowledge of the circulating concentration of placental growth factor (PlGF), an angiogenic factor, integrated with a clinical management algorithm, decreased the time for clinicians to make a diagnosis in women with suspected pre-eclampsia, and whether this approach reduced subsequent maternal or perinatal adverse outcomes. METHODS: We did a multicentre, pragmatic, stepped-wedge cluster-randomised controlled trial in 11 maternity units in the UK, which were each responsible for 3000-9000 deliveries per year. Women aged 18 years and older who presented with suspected pre-eclampsia between 20 weeks and 0 days of gestation and 36 weeks and 6 days of gestation, with a live, singleton fetus were invited to participate by the clinical research team. Suspected pre-eclampsia was defined as new-onset or worsening of existing hypertension, dipstick proteinuria, epigastric or right upper-quadrant pain, headache with visual disturbances, fetal growth restriction, or abnormal maternal blood tests that were suggestive of disease (such as thrombocytopenia or hepatic or renal dysfunction). Women were approached individually, they consented for study inclusion, and they were asked to give blood samples. We randomly allocated the maternity units, representing the clusters, to blocks. Blocks represented an intervention initiation time, which occurred at equally spaced 6-week intervals throughout the trial. At the start of the trial, all units had usual care (in which PlGF measurements were also taken but were concealed from clinicians and women). At the initiation time of each successive block, a site began to use the intervention (in which the circulating PlGF measurement was revealed and a clinical management algorithm was used). Enrolment of women continued for the duration of the blocks either to concealed PlGF testing, or after implementation, to revealed PlGF testing. The primary outcome was the time from presentation with suspected pre-eclampsia to documented pre-eclampsia in women enrolled in the trial who received a diagnosis of pre-eclampsia by their treating clinicians. This trial is registered with ISRCTN, number 16842031. FINDINGS: Between June 13, 2016, and Oct 27, 2017, we enrolled and assessed 1035 women with suspected pre-eclampsia. 12 (1%) women were found to be ineligible. Of the 1023 eligible women, 576 (56%) women were assigned to the intervention (revealed testing) group, and 447 (44%) women were assigned to receive usual care with additional concealed testing (concealed testing group). Three (1%) women in the revealed testing group were lost to follow-up, so 573 (99%) women in this group were included in the analyses. One (99%) women in this group were included in the analyses. The median time to pre-eclampsia diagnosis was 4·1 days with concealed testing versus 1·9 days with revealed testing (time ratio 0·36, 95% CI 0·15-0·87; p=0·027). Maternal severe adverse outcomes were reported in 24 (5%) of 447 women in the concealed testing group versus 22 (4%) of 573 women in the revealed testing group (adjusted odds ratio 0·32, 95% CI 0·11-0·96; p=0·043), but there was no evidence of a difference in perinatal adverse outcomes (15% vs 14%, 1·45, 0·73-2·90) or gestation at delivery (36·6 weeks vs 36·8 weeks; mean difference -0·52, 95% CI -0·63 to 0·73). INTERPRETATION: We found that the availability of PlGF test results substantially reduced the time to clinical confirmation of pre-eclampsia. Where PlGF was implemented, we found a lower incidence of maternal adverse outcomes, consistent with adoption of targeted, enhanced surveillance, as recommended in the clinical management algorithm for clinicians. Adoption of PlGF testing in women with suspected pre-eclampsia is supported by the results of this study. FUNDING: National Institute for Health Research

    Determinants of Initiation Codon Selection during Translation in Mammalian Cells

    Get PDF
    Factors affecting translation of mRNA contribute to the complexity of eukaryotic proteomes. In some cases, translation of a particular mRNA can generate multiple proteins. However, the factors that determine whether ribosomes initiate translation from the first AUG codon in the transcript, from a downstream codon, or from multiple sites are not completely understood. Various mRNA properties, including AUG codon-accessibility and 5′ leader length have been proposed as potential determinants that affect where ribosomes initiate translation. To explore this issue, we performed studies using synthetic mRNAs with two in-frame AUG codons−both in excellent context. Open reading frames initiating at AUG1 and AUG2 encode large and small isoforms of a reporter protein, respectively. Translation of such an mRNA in COS-7 cells was shown to be 5′ cap-dependent and to occur efficiently from both AUG codons. AUG codon-accessibility was modified by using two different elements: an antisense locked nucleic acid oligonucleotide and an exon-junction complex. When either element was used to mask AUG1, the ratio of the proteins synthesized changed, favoring the smaller (AUG2-initiated) protein. In addition, we observed that increased leader length by itself changed the ratio of the proteins and favored initiation at AUG1. These observations demonstrate that initiation codon selection is affected by various factors, including AUG codon-accessibility and 5′ leader length, and is not necessarily determined by the order of AUG codons (5′→3′). The modulation of AUG codon accessibility may provide a powerful means of translation regulation in eukaryotic cells

    Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer's disease

    Get PDF
    Background Both serotonergic signalling disruption and systemic inflammation have been associated with the pathogenesis of Alzheimer’s disease (AD). The common denominator linking the two is the catabolism of the essential amino acid, tryptophan. Metabolism via tryptophan hydroxylase results in serotonin synthesis, whilst metabolism via indoleamine 2,3-dioxygenase (IDO) results in kynurenine and its downstream derivatives. IDO is reported to be activated in times of host systemic inflammation and therefore is thought to influence both pathways. To investigate metabolic alterations in AD, a large-scale metabolic phenotyping study was conducted on both urine and serum samples collected from a multi-centre clinical cohort, consisting of individuals clinically diagnosed with AD, mild cognitive impairment (MCI) and age-matched controls. Methods Metabolic phenotyping was applied to both urine (n = 560) and serum (n = 354) from the European-wide AddNeuroMed/Dementia Case Register (DCR) biobank repositories. Metabolite data were subsequently interrogated for inter-group differences; influence of gender and age; comparisons between two subgroups of MCI - versus those who remained cognitively stable at follow-up visits (sMCI); and those who underwent further cognitive decline (cMCI); and the impact of selective serotonin reuptake inhibitor (SSRI) medication on metabolite concentrations. Results Results revealed significantly lower metabolite concentrations of tryptophan pathway metabolites in the AD group: serotonin (urine, serum), 5-hydroxyindoleacetic acid (urine), kynurenine (serum), kynurenic acid (urine), tryptophan (urine, serum), xanthurenic acid (urine, serum), and kynurenine/tryptophan ratio (urine). For each listed metabolite, a decreasing trend in concentrations was observed in-line with clinical diagnosis: control > MCI > AD. There were no significant differences in the two MCI subgroups whilst SSRI medication status influenced observations in serum, but not urine. Conclusions Urine and serum serotonin concentrations were found to be significantly lower in AD compared with controls, suggesting the bioavailability of the neurotransmitter may be altered in the disease. A significant increase in the kynurenine/tryptophan ratio suggests that this may be a result of a shift to the kynurenine metabolic route due to increased IDO activity, potentially as a result of systemic inflammation. Modulation of the pathways could help improve serotonin bioavailability and signalling in AD patients

    Induction of Sodium/Iodide Symporter (NIS) Expression and Radioiodine Uptake in Non-Thyroid Cancer Cells

    Get PDF
    Background: This study was designed to explore the therapeutic potential of suppressing MAP kinase and PI3K/Akt pathways and histone deacetylase (HDAC) to induce the expression of sodium/iodide symporter (NIS) and radioiodine uptake in non-thyroid cancer cells. Methods: We tested the effects of the MEK inhibitor RDEA119, the Akt inhibitor perifosine, and the HDAC inhibitor SAHA on NIS expression in thirteen human cancer cell lines derived from melanoma, hepatic carcinoma, gastric carcinoma, colon carcinoma, breast carcinoma, and brain cancers. We also examined radioiodine uptake and histone acetylation at the NIS promoter in selected cells. Results: Overall, the three inhibitors could induce NIS expression, to various extents, in melanoma and all the epithelial carcinoma-derived cells but not in brain cancer-derived cells. SAHA was most effective and its effect could be significantly enhanced by RDEA119 and perifosine. The expression of NIS, at both mRNA and protein levels, was most robust in the melanoma cell M14, hepatic carcinoma cell HepG2, and the gastric carcinoma cell MKN-7 cell. Radioiodine uptake was correspondingly induced, accompanied by robust increase in histone acetylation at the NIS promoter, in these cells when treated with the three inhibitors. Conclusions: This is the first demonstration that simultaneously suppressing the MAP kinase and PI3K/Akt pathways and HDAC could induce robust NIS expression and radioiodine uptake in certain non-thyroid human cancer cells, providing novel therapeutic implications for adjunct radioiodine treatment of these cancers

    A protease-based biosensor for the detection of schistosome cercariae

    Get PDF
    Parasitic diseases affect millions of people worldwide, causing debilitating illnesses and death. Rapid and cost-effective approaches to detect parasites are needed, especially in resource-limited settings. A common signature of parasitic diseases is the release of specific proteases by the parasites at multiple stages during their life cycles. To this end, we engineered several modular Escherichia coli and Bacillus subtilis whole-cell-based biosensors which incorporate an interchangeable protease recognition motif into their designs. Herein, we describe how several of our engineered biosensors have been applied to detect the presence and activity of elastase, an enzyme released by the cercarial larvae stage of Schistosoma mansoni. Collectively, S. mansoni and several other schistosomes are responsible for the infection of an estimated 200 million people worldwide. Since our biosensors are maintained in lyophilised cells, they could be applied for the detection of S. mansoni and other parasites in settings without reliable cold chain access
    corecore