27,276 research outputs found

    S-band antenna phased array communications system

    Get PDF
    The development of an S-band antenna phased array for spacecraft to spacecraft communication is discussed. The system requirements, antenna array subsystem design, and hardware implementation are examined. It is stated that the phased array approach offers the greatest simplicity and lowest cost. The objectives of the development contract are defined as: (1) design of a medium gain active phased array S-band communications antenna, (2) development and test of a model of a seven element planar array of radiating elements mounted in the appropriate cavity matrix, and (3) development and test of a breadboard transmit/receive microelectronics module

    Scattered light in the IUE spectra of Epsilon Aurigae

    Get PDF
    As a result of this work it was found that light scattered from the longer wavelengths constitutes a small but non-negligible, wavelength and time dependent fraction of the measured flux in the far UV. The reality of the UV excess has not been unambigiously ruled out. However, it is noted that there are still uncertainties in the assumed scattering profile. New measurements of the scattering properties of the cross disperser grating are planned in order to verify the results of Mount and Fastie and extend the wavelength coverage into the far wings of the profile. The results of these measurements will no doubt reduce some of these uncertainties. For the present, it is felt that the BCH approach is a significant improvement over the methods heretofore available for the treatment of scattered light in IUE spectra

    Retransmission of water resources data using the ERTS-1 data collection system

    Get PDF
    There are no author-identified significant results in this report

    Observations of cosmic ray induced phosphenes

    Get PDF
    Phosphene observations by astronauts on flights near and far from earth atmosphere are discussed. It was concluded that phosphenes could be observed by the naked eye. Further investigation is proposed to determine realistic human tolerance levels for extended missions and to evaluate the need to provide special spacecraft shielding

    Maine\u27s Centennial Hymn

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-me/1598/thumbnail.jp

    Plate-impact loading of cellular structures formed by selective laser melting

    No full text
    Porous materials are of great interest because of improved energy absorption over their solid counterparts. Their properties, however, have been difficult to optimize. Additive manufacturing has emerged as a potential technique to closely define the structure and properties of porous components, i.e. density, strut width and pore size; however, the behaviour of these materials at very high impact energies remains largely unexplored. We describe an initial study of the dynamic compression response of lattice materials fabricated through additive manufacturing. Lattices consisting of an array of intersecting stainless steel rods were fabricated into discs using selective laser melting. The resulting discs were impacted against solid stainless steel targets at velocities ranging from 300 to 700 m s-1 using a gas gun. Continuum CTH simulations were performed to identify key features in the measured wave profiles, while 3D simulations, in which the individual cells were modelled, revealed details of microscale deformation during collapse of the lattice structure. The validated computer models have been used to provide an understanding of the deformation processes in the cellular samples. The study supports the optimization of cellular structures for application as energy absorbers. © 2014 IOP Publishing Ltd

    Realistic Expanding Source Model for Invariant One-Particle Multiplicity Distributions and Two-Particle Correlations in Relativistic Heavy-Ion Collisions

    Get PDF
    We present a realistic expanding source model with nine parameters that are necessary and sufficient to describe the main physics occuring during hydrodynamical freezeout of the excited hadronic matter produced in relativistic heavy-ion collisions. As a first test of the model, we compare it to data from central Si + Au collisions at p_lab/A = 14.6 GeV/c measured in experiment E-802 at the AGS. An overall chi-square per degree of freedom of 1.055 is achieved for a fit to 1416 data points involving invariant pi^+, pi^-, K^+, and K^- one-particle multiplicity distributions and pi^+ and K^+ two-particle correlations. The 99-percent-confidence region of parameter space is identified, leading to one-dimensional error estimates on the nine fitted parameters and other calculated physical quantities. Three of the most important results are the freezeout temperature, longitudinal proper time, and baryon density along the symmetry axis. For these we find values of 92.9 +/- 4.4 MeV, 8.2 +/- 2.2 fm/c, and 0.0222 + 0.0096 / - 0.0069 fm^-3, respectively.Comment: 37 pages and 12 figures. RevTeX 3.0. Submitted to Physical Review C. Complete preprint, including device-independent (dvi), PostScript, and LaTeX versions of the text, plus PostScript files of all figures, are available at http://t2.lanl.gov/publications/publications.html or at ftp://t2.lanl.gov/publications/res

    Improving the Functional Control of Aged Ferroelectrics using Insights from Atomistic Modelling

    Get PDF
    We provide a fundamental insight into the microscopic mechanisms of the ageing processes. Using large scale molecular dynamics simulations of the prototypical ferroelectric material PbTiO3, we demonstrate that the experimentally observed ageing phenomena can be reproduced from intrinsic interactions of defect-dipoles related to dopant-vacancy associates, even in the absence of extrinsic effects. We show that variation of the dopant concentration modifies the material's hysteretic response. We identify a universal method to reduce loss and tune the electromechanical properties of inexpensive ceramics for efficient technologies.Comment: 6 pages, 3 figure

    Surfatron and stochastic acceleration of electrons in astrophysical plasmas

    Get PDF
    Electron acceleration by large amplitude electrostatic waves in astrophysical plasmas is studied using particle-in-cell (PIC) simulations. The waves are excited initially at the electron plasma frequency ωpe\omega_{\rm pe} by a Buneman instability driven by ion beams: the parameters of the ion beams are appropriate for high Mach number astrophysical shocks, such as those associated with supernova remnants (SNRs). If ωpe\omega_{\rm pe} is much higher than the electron cyclotron frequency Ωe\Omega_{\rm e}, the linear phase of the instability does not depend on the magnitude of the magnetic field. However, the subsequent time evolution of particles and waves depends on both ωpe/Ωe\omega_{\rm pe}/\Omega_{\rm e} and the size of the simulation box LL. If LL is equal to one wavelength, λ0\lambda_0, of the Buneman-unstable mode, electrons trapped by the waves undergo acceleration via the surfatron mechanism across the wave front. This occurs most efficiently when ωpe/Ωe≃100\omega_{\rm pe}/\Omega_{\rm e} \simeq 100: in this case electrons are accelerated to speeds of up c/2c/2 where cc is the speed of light. In a simulation with L=4λ0L=4\lambda_0 and ωpe/Ωe=100\omega_{\rm pe}/\Omega_{\rm e} = 100, it is found that sideband instabilities give rise to a broad spectrum of wavenumbers, with a power law tail. Some stochastic electron acceleration is observed in this case, but not the surfatron process. Direct integration of the electron equations of motion, using parameters approximating to those of the wave modes observed in the simulations, suggests that the surfatron is compatible with the presence of a broad wave spectrum if ωpe/Ωe>100\omega_{\rm pe}/\Omega_{\rm e}> 100. It is concluded that a combination of stochastic and surfatron acceleration could provide an efficient generator of mildly relativistic electrons at SNR shocks
    • 

    corecore