1,764 research outputs found
State Oversight and Local Government Savings: An Analysis of Illinois County Fund Balance Politics
This paper assesses Illinois county government policies pertaining to the size, use, and replenishment of unreserved funds. As political forces push for reductions in taxes and in government itself, incentives for local governments to use less transparent means for managing finances increase. A better understanding of the impact which fund balance policies have on the amount of financial slack local governments keep on the one hand, and how counties use the funds on the other, is of increasing importance. This work expands on previous analyses of budgetary uncertainty and the possibility of using slack to stabilize service provision through times of revenue abundance and scarcity (Marlowe, 2004, 2005; Stewart, 2009, 2011a; Stewart, Hamman, and Pink-Harper, 2018; Tyer, 1993; Wang and Hou, 2012; Wolkoff, 1987)
Recommended from our members
Radar studies of the vertical distribution of insects migrating over southern Britain: the influence of temperature inversions on nocturnal layer concentrations
Insects migrating over two sites in southern UK (Malvern in Worcestershire, and Harpenden in Hertfordshire) have been monitored continuously with nutating vertical-looking radars (VLRs) equipped with powerful control and analysis software. These observations make possible, for the first time, a systematic investigation of the vertical distribution of insect aerial density in the atmosphere, over temporal scales ranging from the short (instantaneous vertical profiles updated every 15 min) to the very long (profiles aggregated over whole seasons or even years). In the present paper, an outline is given of some general features of insect stratification as revealed by the radars, followed by a description of occasions during warm nights in the summer months when intense insect layers developed. Some of these nocturnal layers were due to the insects flying preferentially at the top of strong surface temperature inversions, and in other cases, layering was associated with higher-altitude temperature maxima, such as those due to subsidence inversions. The layers were formed from insects of a great variety of sizes, but peaks in the mass distributions pointed to a preponderance of medium-sized noctuid moths on certain occasions
Comparison of artificial neural network analysis with other multimarker methods for detecting genetic association
<p>Abstract</p> <p>Background</p> <p>Debate remains as to the optimal method for utilising genotype data obtained from multiple markers in case-control association studies. I and colleagues have previously described a method of association analysis using artificial neural networks (ANNs), whose performance compared favourably to single-marker methods. Here, the perfomance of ANN analysis is compared with other multi-marker methods, comprising different haplotype-based analyses and locus-based analyses.</p> <p>Results</p> <p>Of several methods studied and applied to simulated SNP datasets, heterogeneity testing of estimated haplotype frequencies using asymptotic <it>p </it>values rather than permutation testing had the lowest power of the methods studied and ANN analysis had the highest power. The difference in power to detect association between these two methods was statistically significant (<it>p </it>= 0.001) but other comparisons between methods were not significant. The raw <it>t </it>statistic obtained from ANN analysis correlated highly with the empirical statistical significance obtained from permutation testing of the ANN results and with the <it>p </it>value obtained from the heterogeneity test.</p> <p>Conclusion</p> <p>Although ANN analysis was more powerful than the standard haplotype-based test it is unlikely to be taken up widely. The permutation testing necessary to obtain a valid <it>p </it>value makes it slow to perform and it is not underpinned by a theoretical model relating marker genotypes to disease phenotype. Nevertheless, the superior performance of this method does imply that the widely-used haplotype-based methods for detecting association with multiple markers are not optimal and efforts could be made to improve upon them. The fact that the <it>t </it>statistic obtained from ANN analysis is highly correlated with the statistical significance does suggest a possibility to use ANN analysis in situations where large numbers of markers have been genotyped, since the <it>t</it> value could be used as a proxy for the <it>p </it>value in preliminary analyses.</p
Frequency-Domain Photon Migration in Turbid Media
An analytical model is presented for the propagation of diffuse photon density waves in turbid media. The frequency- and wavelength-dependence of photon density waves are measured using Frequency-domain Photon Migration (FDPM). Media optical properties, including absorption, transport, and fluorescence relaxation times are calculated from experimental results
The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals
publisher: Elsevier articletitle: The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals journaltitle: Minerals Engineering articlelink: http://dx.doi.org/10.1016/j.mineng.2015.09.026 content_type: article copyright: Copyright © 2015 The Authors. Published by Elsevier Ltd.© 2015 Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
The Detection of Ionizing Radiation by Plasma Panel Sensors: Cosmic Muons, Ion Beams and Cancer Therapy
The plasma panel sensor is an ionizing photon and particle radiation detector
derived from PDP technology with high gain and nanosecond response.
Experimental results in detecting cosmic ray muons and beta particles from
radioactive sources are described along with applications including high energy
and nuclear physics, homeland security and cancer therapeuticsComment: Presented at SID Symposium, June 201
Plasma Panel Sensors for Particle and Beam Detection
The plasma panel sensor (PPS) is an inherently digital, high gain, novel
variant of micropattern gas detectors inspired by many operational and
fabrication principles common to plasma display panels (PDPs). The PPS is
comprised of a dense array of small, plasma discharge, gas cells within a
hermetically-sealed glass panel, and is assembled from non-reactive,
intrinsically radiation-hard materials such as glass substrates, metal
electrodes and mostly inert gas mixtures. We are developing the technology to
fabricate these devices with very low mass and small thickness, using gas gaps
of at least a few hundred micrometers. Our tests with these devices demonstrate
a spatial resolution of about 1 mm. We intend to make PPS devices with much
smaller cells and the potential for much finer position resolutions. Our PPS
tests also show response times of several nanoseconds. We report here our
results in detecting betas, cosmic-ray muons, and our first proton beam tests.Comment: 2012 IEEE NS
Development of a plasma panel radiation detector: recent progress and key issues
A radiation detector based on plasma display panel technology, which is the
principal component of plasma television displays is presented. Plasma Panel
Sensor (PPS) technology is a variant of micropattern gas radiation detectors.
The PPS is conceived as an array of sealed plasma discharge gas cells which can
be used for fast response (O(5ns) per pixel), high spatial resolution detection
(pixel pitch can be less than 100 micrometer) of ionizing and minimum ionizing
particles. The PPS is assembled from non-reactive, intrinsically radiation-hard
materials: glass substrates, metal electrodes and inert gas mixtures. We report
on the PPS development program, including simulations and design and the first
laboratory studies which demonstrate the usage of plasma display panels in
measurements of cosmic ray muons, as well as the expansion of experimental
results on the detection of betas from radioactive sources.Comment: presented at IEEE NSS 2011 (Barcelona
- âŠ