2,064 research outputs found

    Incidence and costs of unintentional falls in older people in the United Kingdom

    Get PDF
    STUDY OBJECTIVE: To estimate the number of accident and emergency (A&E) attendances, admissions to hospital, and the associated costs as a result of unintentional falls in older people. DESIGN: Analysis of national databases for cost of illness. SETTING: United Kingdom, 1999, cost to the National Health Service (NHS) and Personal Social Services (PSS). PARTICIPANTS: Four age groups of people 60 years and over (60–64, 65–69, 70–74, and 75) attending an A&E department or admitted to hospital after an unintentional fall. Databases analysed were the Home Accident Surveillance System (HASS) and Leisure Accident Surveillance System (LASS), and Hospital Episode Statistics (HES). MAIN RESULTS: There were 647 721 A&E attendances and 204 424 admissions to hospital for fall related injuries in people aged 60 years and over. For the four age groups A&E attendance rates per 10 000 population were 273.5, 287.3, 367.9, and 945.3, and hospital admission rates per 10 000 population were 34.5, 52.0, 91.9, and 368.6. The cost per 10 000 population was £300 000 in the 60–64 age group, increasing to £1 500 000 in the 75 age group. These falls cost the UK government £981 million, of which the NHS incurred 59.2%. Most of the costs (66%) were attributable to falls in those aged 75 years. The major cost driver was inpatient admissions, accounting for 49.4% of total cost of falls. Long term care costs were the second highest, accounting for 41%, primarily in those aged 75 years. CONCLUSIONS: Unintentional falls impose a substantial burden on health and social services

    The Octave (Birmingham - Sheffield Hallam) automated pipeline for extracting oscillation parameters of solar-like main-sequence stars

    Full text link
    The number of main-sequence stars for which we can observe solar-like oscillations is expected to increase considerably with the short-cadence high-precision photometric observations from the NASA Kepler satellite. Because of this increase in number of stars, automated tools are needed to analyse these data in a reasonable amount of time. In the framework of the asteroFLAG consortium, we present an automated pipeline which extracts frequencies and other parameters of solar-like oscillations in main-sequence and subgiant stars. The pipeline uses only the timeseries data as input and does not require any other input information. Tests on 353 artificial stars reveal that we can obtain accurate frequencies and oscillation parameters for about three quarters of the stars. We conclude that our methods are well suited for the analysis of main-sequence stars, which show mainly p-mode oscillations.Comment: accepted by MNRA

    A thorough analysis of the short- and mid-term activity-related variations in the solar acoustic frequencies

    Get PDF
    The frequencies of the solar acoustic oscillations vary over the activity cycle. The variations in other activity proxies are found to be well correlated with the variations in the acoustic frequencies. However, each proxy has a slightly different time behaviour. Our goal is to characterize the differences between the time behaviour of the frequency shifts and of two other activity proxies, namely, the area covered by sunspots and the 10.7cm flux. We define a new observable that is particularly sensitive to the short-term frequency variations. We then compare the observable when computed from model frequency shifts and from observed frequency shifts obtained with the Global Oscillation Network Group (GONG) for cycle 23. Our analysis shows that on the shortest time-scales the variations in the frequency shifts seen in the GONG observations are strongly correlated with the variations in the area covered by sunspots. However, a significant loss of correlation is still found. We verify that the times when the frequency shifts and the sunspot area do not vary in a similar way tend to coincide with the times of the maxima of the quasi-biennial variations seen in the solar seismic data. A similar analysis of the relation between the 10.7cm flux and the frequency shifts reveals that the short-time variations in the frequency shifts follow even more closely those of the 10.7cm flux than those of the sunspot area. However, a loss of correlation between frequency shifts and 10.7cm flux variations is still found around the same times.Comment: 7 pages, 6 figures, accepted for publication in MNRA

    On the relation between activity-related frequency shifts and the sunspot distribution over the solar cycle 23

    Get PDF
    The activity-related variations in the solar acoustic frequencies have been known for 30 years. However, the importance of the different contributions is still not well established. With this in mind, we developed an empirical model to estimate the spot-induced frequency shifts, which takes into account the sunspot properties, such as area and latitude. The comparison between the model frequency shifts obtained from the daily sunspot records and those observed suggests that the contribution from a stochastic component to the total frequency shifts is about 30%. The remaining 70% is related to a global, long-term variation. We also propose a new observable to investigate the short- and mid-term variations of the frequency shifts, which is insensitive to the long-term variations contained in the data. On the shortest time scales the variations in the frequency shifts are strongly correlated with the variations in the total area covered by sunspots. However, a significant loss of correlation is still found, which cannot be fully explained by ignoring the invisible side of the Sun when accounting for the total sunspot area. We also verify that the times when the frequency shifts and the sunspot areas do not vary in a similar way tend to coincide with the times of the maximum amplitude of the quasi-biennial variations found in the seismic data.Comment: 4 pages, 2 figures, proceedings of the Joint TASC2 - KASC9 Workshop - SPACEINN - HELAS8 Conference "Seismology of the Sun and the Distant Stars 2016: Using Today's Successes to Prepare the Future". To be published by the EPJ Web of Conference

    Performance of the Birmingham Solar-Oscillations Network (BiSON)

    Get PDF
    The Birmingham Solar-Oscillations Network (BiSON) has been operating with a full complement of six stations since 1992. Over 20 years later, we look back on the network history. The meta-data from the sites have been analysed to assess performance in terms of site insolation, with a brief look at the challenges that have been encountered over the years. We explain how the international community can gain easy access to the ever-growing dataset produced by the network, and finally look to the future of the network and the potential impact of nearly 25 years of technology miniaturisation.Comment: 31 pages, 19 figures. Accepted by Solar Physics: 2015 October 20. First online: 2015 December 7. Open Acces

    Substrate concentration dependence of the diffusion-controlled steady-state rate constant

    Full text link
    The Smoluchowski approach to diffusion-controlled reactions is generalized to interacting substrate particles by including the osmotic pressure and hydrodynamic interactions of the nonideal particles in the Smoluchoswki equation within a local-density approximation. By solving the strictly linearized equation for the time-independent case with absorbing boundary conditions, we present an analytic expression for the diffusion-limited steady-state rate constant for small substrate concentrations in terms of an effective second virial coefficient B_2*. Comparisons to Brownian dynamics simulations excluding HI show excellent agreement up to bulk number densities of B_2* rho_0 < 0.4 for hard sphere and repulsive Yukawa-like interactions between the substrates. Our study provides an alternative way to determine the second virial coefficient of interacting macromolecules experimentally by measuring their steady-state rate constant in diffusion-controlled reactions at low densities.Comment: 7 pages, 3 figure

    From Solar-like to Mira stars:a unifying description of stellar pulsators in the presence of stochastic noise

    Get PDF
    We discuss and characterise the power spectral density properties of a model aimed at describing pulsations in stars from the main-sequence to the asymptotic giant branch. We show that the predicted limit of the power spectral density for a pulsation mode in the presence of stochastic noise is always well approximated by a Lorentzian function. While in stars predominantly stochastically driven the width of the Lorentzian is defined by the mode lifetime, in stars where the driving is predominately coherent the width is defined by the amplitude of the stochastic perturbations. In stars where both drivings are comparable, the width is defined by both these parameters and is smaller than that expected from pure stochastic driving. We illustrate our model through numerical simulations and propose a well defined classification of stars into predominantly stochastic (solar-like) and predominately coherent (classic) pulsators. We apply the model to the study of the Mira variable U Per, and the semiregular variable L2 Pup and, following our classification, conclude that they are both classical pulsators. Our model provides a natural explanation for the change in behaviour of the pulsation amplitude-period relation noted in several earlier works. Moreover, our study of L2 Pup enables us to test the scaling relation between the mode line width and effective temperature, confirming that an exponential scaling reproduces well the data all the way from the main sequence to the asymptotic giant branch, down to temperatures about 1000 K below what has been tested in previous studies.Comment: 11 pages, 8 figures, accepted for publication in MNRA

    Analysis of the solar cycle and core rotation using 15 years of Mark-I observations:1984-1999. I. The solar cycle

    Get PDF
    High quality observations of the low-degree acoustic modes (p-modes) exist for almost two complete solar cycles using the solar spectrophotometer Mark-I, located at the Observatorio del Teide (Tenerife, Spain) and operating now as part of the Birmingham Solar Oscillations Network (BiSON). We have performed a Fourier analysis of 30 calibrated time-series of one year duration covering a total period of 15 years between 1984 and 1999. Applying different techniques to the resulting power spectra, we study the signature of the solar activity changes on the low-degree p-modes. We show that the variation of the central frequencies and the total velocity power (TVP) changes. A new method of simultaneous fit is developed and a special effort has been made to study the frequency-dependence of the frequency shift. The results confirm a variation of the central frequencies of acoustic modes of about 450 nHz, peak-to-peak, on average for low degree modes between 2.5 and 3.7 mHz. The TVP is anti-correlated with the common activity indices with a decrease of about 20% between the minimum and the maximum of solar cycle 22. The results are compared with those obtained for intermediate degrees, using the LOWL data. The frequency shift is found to increase with the degree with a weak l-dependence similar to that of the inverse mode mass. This verifies earlier suggestions that near surface effects are predominant.Comment: Accepted by A&A October 3 200
    • …
    corecore