50 research outputs found

    Multiscale modelling of cancer progression and treatment control : the role of intracellular heterogeneities in chemotherapy treatment

    Get PDF
    Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.PostprintPeer reviewe

    On the stability of homogeneous steady states of a chemotaxis system with logistic growth term

    Get PDF
    We consider a nonlinear PDEs system of Parabolic-Elliptic type with chemotactic terms. The system models the movement of a population “n” towards a higher concentration of a chemical “c” in a bounded domain Ω. We consider constant chemotactic sensitivity χ and an elliptic equation to describe the distribution of the chemicalnt − dnΔn = −χdiv(n∇c) + μn(1−n), −dcΔc + c = h(n) for a monotone increasing and lipschitz function h. We study the asymptotic behavior of solutions under the assumption of 2χ∣h′∣ < μ. As a result of the asymptotic stability we obtain the uniqueness of the strictly positive steady states.PostprintPeer reviewe

    A mathematical multi-organ model for bidirectional epithelial-mesenchymal transitions in the metastatic spread of cancer

    Get PDF
    Funding: Engineering and Physical Sciences Research Council (EPSRC) [to L.C.F.]; EPSRC Grant No. EP/N014642/1 (EPSRC Centre for Multiscale Soft Tissue Mechanics WithApplication to Heart & Cancer) [to M.A.J.C.].Cancer invasion and metastatic spread to secondary sites in the body are facilitated by a complex interplay between cancer cells of different phenotypes and their microenvironment. A trade-off between the cancer cells’ ability to invade the tissue and to metastasize, and their ability to proliferate has been observed. This gives rise to the classification of cancer cells into those of mesenchymal and epithelial phenotype, respectively. Additionally, mixed phenotypic states between these two extremes exist. Cancer cells can transit between these states via epithelial–mesenchymal transition (EMT) and the reverse process, mesenchymal–epithelial transition (MET). These processes are crucial for both the local tissue invasion and the metastatic spread of cancer cells. To shed light on the role of these phenotypic states and the transitions between them in the invasive and metastatic process, we extend our recently published multi-grid, hybrid, individual-based mathematical metastasis framework (Franssen et al. 2019, A mathematical framework for modelling the metastatic spread of cancer. Bull. Math. Biol., 81, 1965). In addition to cancer cells of epithelial and of mesenchymal phenotype, we now also include those of an intermediate partial-EMT phenotype. Furthermore, we allow for the switching between these phenotypic states via EMT and MET at the biologically appropriate steps of the invasion-metastasis cascade. We also account for the likelihood of spread of cancer cells to the various secondary sites and differentiate between the tissues of the organs involved in our simulations. Finally, we consider the maladaptation of metastasized cancer cells to the new tumour microenvironment at secondary sites as well as the immune response at these sites by accounting for cancer cell dormancy and death. This way, we create a first mathematical multi-organ model that explicitly accounts for EMT-processes occurring at the level of individual cancer cells in the context of the invasion-metastasis cascade.PostprintPeer reviewe

    Evolutionary dynamics in vascularised tumours under chemotherapy : mathematical modelling, asymptotic analysis and numerical simulations

    Get PDF
    We consider a mathematical model for the evolutionary dynamics of tumour cells in vascularised tumours under chemotherapy. The model comprises a system of coupled partial integro-differential equations for the phenotypic distribution of tumour cells, the concentration of oxygen and the concentration of a chemotherapeutic agent. In order to disentangle the impact of different evolutionary parameters on the emergence of intra-tumour phenotypic heterogeneity and the development of resistance to chemotherapy, we construct explicit solutions to the equation for the phenotypic distribution of tumour cells and provide a detailed quantitative characterisation of the long-time asymptotic behaviour of such solutions. Analytical results are integrated with numerical simulations of a calibrated version of the model based on biologically consistent parameter values. The results obtained provide a theoretical explanation for the observation that the phenotypic properties of tumour cells in vascularised tumours vary with the distance from the blood vessels. Moreover, we demonstrate that lower oxygen levels may correlate with higher levels of phenotypic variability, which suggests that the presence of hypoxic regions supports intra-tumour phenotypic heterogeneity. Finally, the results of our analysis put on a rigorous mathematical basis the idea, previously suggested by formal asymptotic results and numerical simulations, that hypoxia favours the selection for chemoresistant phenotypic variants prior to treatment. Consequently, this facilitates the development of resistance following chemotherapy.Publisher PDFPeer reviewe

    Calibrating models of cancer invasion : parameter estimation using approximate Bayesian computation and gradient matching

    Get PDF
    Funding: Y.X. is funded by a Doctoral Training Partnership grant from the Engineering and Physical Sciences ResearchCouncil (EPSRC) and a University of St Andrews St Leonard’s International Fee Scholarship.We present two different methods to estimate parameters within a partial differential equation model of cancer invasion. The model describes the spatio-temporal evolution of three variables—tumour cell density, extracellular matrix density and matrix degrading enzyme concentration—in a one-dimensional tissue domain. The first method is a likelihood-free approach associated with approximate Bayesian computation; the second is a two-stage gradient matching method based on smoothing the data with a generalized additive model (GAM) and matching gradients from the GAM to those from the model. Both methods performed well on simulated data. To increase realism, additionally we tested the gradient matching scheme with simulated measurement error and found that the ability to estimate some model parameters deteriorated rapidly as measurement error increased.Publisher PDFPeer reviewe

    Stochastic differential equation modelling of cancer cell migration and tissue invasion

    Get PDF
    Funding: Engineering and Physical Sciences Research Council (EPSRC) EP/S030875/1.Invasion of the surrounding tissue is a key aspect of cancer growth and spread involving a coordinated effort between cell migration and matrix degradation, and has been the subject of mathematical modelling for almost 30 years. In this current paper we address a long-standing question in the field of cancer cell migration modelling. Namely, identify the migratory pattern and spread of individual cancer cells, or small clusters of cancer cells, when the macroscopic evolution of the cancer cell colony is dictated by a specific partial differential equation (PDE). We show that the usual heuristic understanding of the diffusion and advection terms of the PDE being one-to-one responsible for the random and biased motion of the solitary cancer cells, respectively, is not precise. On the contrary, we show that the drift term of the correct stochastic differential equation scheme that dictates the individual cancer cell migration, should account also for the divergence of the diffusion of the PDE. We support our claims with a number of numerical experiments and computational simulations.Publisher PDFPeer reviewe

    A novel 3D atomistic-continuum cancer invasion model : in silico simulations of an in vitro organotypic invasion assay

    Get PDF
    Copyright © 2021 Elsevier Ltd. All rights reserved.We develop a three-dimensional genuinely hybrid atomistic-continuum model that describes the invasive growth dynamics of individual cancer cells in tissue. The framework explicitly accounts for phenotypic variation by distinguishing between cancer cells of an epithelial-like and a mesenchymal-like phenotype. It also describes mutations between these cell phenotypes in the form of epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-epithelial transition (MET). The proposed model consists of a hybrid system of partial and stochastic differential equations that describe the evolution of epithelial-like and mesenchymal-like cancer cells, respectively, under the consideration of matrix-degrading enzyme concentrations and the extracellular matrix density. With the help of inverse parameter estimation and a sensitivity analysis, this three-dimensional model is then calibrated to an in vitro organotypic invasion assay experiment of oral squamous cell carcinoma cells.PostprintPeer reviewe

    Bridging the gap between individual-based and continuum models of growing cell populations

    Get PDF
    Funding: FRM is funded by the Engineering and Physical Sciences Research Council (EPSRC) (Grant No. EP/N014642/1).Continuum models for the spatial dynamics of growing cell populations have been widely used to investigate the mechanisms underpinning tissue development and tumour invasion. These models consist of nonlinear partial differential equations that describe the evolution of cellular densities in response to pressure gradients generated by population growth. Little prior work has explored the relation between such continuum models and related single-cell-based models. We present here a simple stochastic individual-based model for the spatial dynamics of multicellular systems whereby cells undergo pressure-driven movement and pressure-dependent proliferation. We show that nonlinear partial differential equations commonly used to model the spatial dynamics of growing cell populations can be formally derived from the branching random walk that underlies our discrete model. Moreover, we carry out a systematic comparison between the individual-based model and its continuum counterparts, both in the case of one single cell population and in the case of multiple cell populations with different biophysical properties. The outcomes of our comparative study demonstrate that the results of computational simulations of the individual-based model faithfully mirror the qualitative and quantitative properties of the solutions to the corresponding nonlinear partial differential equations. Ultimately, these results illustrate how the simple rules governing the dynamics of single cells in our individual-based model can lead to the emergence of complex spatial patterns of population growth observed in continuum models.PostprintPeer reviewe

    Bystander effects and their implications for clinical radiation therapy : insights from multiscale in silico experiments

    Get PDF
    GGP and MAJC thank University of Dundee, where this research was carried out. The authors gratefully acknowledge the support of the ERC Advanced Investigator Grant 227619, M5CGS - From Mutations to Metastases: Multiscale Mathematical Modelling of Cancer Growth and Spread. AJM Acknowledges support from EU BIOMICS Project DG-CNECT Contract 318202.Radiotherapy is a commonly used treatment for cancer and is usually given in varying doses. At low radiation doses relatively few cells die as a direct response to radiation but secondary radiation effects, such as DNA mutation or bystander phenomena, may affect many cells. Consequently it is at low radiation levels where an understanding of bystander effects is essential in designing novel therapies with superior clinical outcomes. In this article, we use a hybrid multiscale mathematical model to study the direct effects of radiation as well as radiation-induced bystander effects on both tumour cells and normal cells. We show that bystander responses play a major role in mediating radiation damage to cells at low-doses of radiotherapy, doing more damage than that due to direct radiation. The survival curves derived from our computational simulations showed an area of hyper-radiosensitivity at low-doses that are not obtained using a traditional radiobiological model.PostprintPeer reviewe

    A genuinely hybrid, multiscale 3D cancer invasion and metastasis modelling framework

    Get PDF
    We introduce in this paper substantial enhancements to a previously proposed hybrid multiscale cancer invasion modelling framework to better reflect the biological reality and dynamics of cancer. These model updates contribute to a more accurate representation of cancer dynamics, they provide deeper insights and enhance our predictive capabilities. Key updates include the integration of porous medium-like diffusion for the evolution of Epithelial-like Cancer Cells and other essential cellular constituents of the system, more realistic modelling of Epithelial–Mesenchymal Transition and Mesenchymal–Epithelial Transition models with the inclusion of Transforming Growth Factor beta within the tumour microenvironment, and the introduction of Compound Poisson Process in the Stochastic Differential Equations that describe the migration behaviour of the Mesenchymal-like Cancer Cells. Another innovative feature of the model is its extension into a multi-organ metastatic framework. This framework connects various organs through a circulatory network, enabling the study of how cancer cells spread to secondary sites.Peer reviewe
    corecore