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Abstract

We develop a three-dimensional genuinely hybrid atomistic-continuum model

that describes the invasive growth dynamics of individual cancer cells in tis-

sue. The framework explicitly accounts for phenotypic variation by distinguish-

ing between cancer cells of an epithelial-like and a mesenchymal-like pheno-

type. It also describes mutations between these cell phenotypes in the form of

epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-

epithelial transition (MET). The model consists of a hybrid system of partial

and stochastic differential equations that describe the evolution of epithelial-

like and mesenchymal-like cancer cells, respectively, under the consideration of

matrix-degrading enzyme concentrations and the extracellular matrix density.

With the help of inverse parameter estimation and a sensitivity analysis, this

three-dimensional model is then calibrated to an in vitro organotypic invasion

assay experiment of oral squamous cell carcinoma cells.
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1. Introduction

The activation of invasion, together with subsequent metastasis, has been iden-

tified as one of the hallmarks of cancer [1, 2]. Together, these processes account

for over 90 % of cancer-related deaths [1, 3]. In epithelial-derived solid tu-

mours, so-called carcinomas, the processes of invasion and metastasis involve5

various phenotypic changes in the initially epithelial-like cancer cells. These

are commonly summarised as epithelial-mesenchymal transition (EMT) and

mesenchymal-epithelial transition (MET). Generally speaking, EMT coincides

with increased motility through a loss in cell-cell adhesion and a gain in cell-

matrix adhesion, as well as increased matrix-degrading enzyme (MDE) expres-10

sion [4]. Through MET, these processes are reversed. During cancer invasion,

complex interactions between cancer cells of various phenotypes and the ex-

tracellular matrix (ECM) in their tumour-microenvironment typically result in

cancer cells moving away from the primary tumour into the surrounding tissue

in particular.15

Mathematical modelling may provide a complementary approach to help under-

stand the complex mechanisms underlying cancer invasion. However, biologi-

cally accurate modelling approaches are crucial to close the often-perceived gap

between experimental work and mathematical models. Due to the number of

cells involved in cancer invasion, continuum models are a popular and compu-20

tationally efficient approach to modelling cancer invasion, cf. review sections in

[5, 6]. This approach can reflect the biology of epithelial-like cancer cells and

hence their spatio-temporal evolution well. Moreover, continuous models can

be analysed mathematically, e.g. [7, 8, 9]. However, cancer cells of mesenchymal

phenotype play a crucial role in cancer invasion [10]. These cells make up only25

a small proportion—and hence relatively small number—of cancer cells in the

initial tumour [11]. A distinguishing feature of mesenchymal-like cancer cells

is their loss of cell-cell adhesion. Hence, it would be biologically inaccurate

to represent cells of mesenchymal phenotype through a continuum approach.

Modelling cancer cells of various phenotypes along the epithelial-mesenchymal30
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spectrum individually, cf. [12, 5, 13], overcomes this problem but the compu-

tational cost limits the number of cells that can be modelled. Building on

the two-dimensional model by [14], we propose a three-dimensional model that

represents the spatio-temporal evolution of epithelial-like and mesenchymal-like

cancer cells in a biologically appropriate manner while retaining computational35

efficiency. This is achieved by modelling the epithelial-like cancer cells, which

make up the bulk of the tumour, by a macroscopic density profile and their time

evolution by a continuum partial differential equation (PDE) approach. The

more sparsely occurring mesenchymal-like cancer cells through an individual-

based stochastic differential equation (SDE) approach.40

This modelling approach allows us to bridge the often-existent gap between

experimental and mathematical work. To demonstrate this, we parametrise

the model to accurately represent the invasion of oral squamous cell carcinoma

(OSCC) cells in an experimental organotypic invasion model proposed by [15].

In OSCC, both EMT and MET have been shown to play a crucial role in the45

local tumour invasion [16, 17]. Through the computational simulations that

we carry out, we find that our three-dimensional hybrid atomistic-continuum

model of EMT- and MET-dependent cancer cell invasion provides qualitatively

and quantitatively biologically realistic outcomes in OSCC invasion.

The remainder of the paper is organised as follows. In Section 2, we explain the50

role of epithelial- and mesenchymal-like cancer cells, as well as of the transition

of cells between those phenotypes, in cancer invasion. Moreover, we describe the

biological background, setup and result quantification of the organotypic inva-

sion assay experiments by [15], which we we use to calibrate our model to in the

following sections. In Section 3, we introduce the three-dimensional genuinely55

hybrid model of cancer invasion. Further, we describe how we calibrate it to

the particular application of the experiments by [15]. In Section 4, we outline

the settings, the parameter estimation, and the sensitivity analysis of the simu-

lations of the experiments by [15] that we model. In Section 5, we present and

discuss the simulation results. Finally, in Section 6, we discuss the biological60
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Figure 1: Schematic representation of the EMT (left to right). As an outcome of EMT,

the cell-cell adhesion is reduced and invasiveness enhanced through mechanisms explained in

the text. Further, cancer cells become more potent at degrading the basement membranes of

organs and vessels, as shown towards the right of the figure, as well as the ECM in general.

This allows the mesenchymal-like cancer cells to invade the surrounding stroma. During

MET, which can be understood by reading the figure right to left, these changes in phenotype

are reversed. Reproduced from [4] with permission from Springer. ((pending))

implications of our work and planned extensions to the current model.

2. Biological background

The invasion of carcinomas into the surrounding tissue is the central biological

processed that we model. Due to local constraints e.g. in essential nutrients

and oxygen, cancer cells become invasive after the carcinoma reaches a size65

of approximately 0.1–0.2 cm [18]. During the invasive growth phase, cancer

cells of mesenchymal phenotype are observed in addition to those of epithelial

phenotype both in vivo [19, 20] and in organotypic assay experiments [15]. In

this section, the characteristics of both phenotypes are explained. Moreover,

EMT and MET—the processes by which the phenotypes of cancer cells change—70

are discussed.

Cancer cells adapt to the environmental requirements of their surrounding via

changes in phenotype [21]. EMT and MET are a canonical group of—at least

transiently—observed phenotypic changes that are assumed to be crucial for the

spatial spread of cancer [22, 23, 24]. Various combinations of so-called EMT-75

inducing transcription factors together with a number of extracellular molecules
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in the tumour microenvironment and related pathways are thought to trigger

EMT-/MET-related processes [25].

As an outcome of EMT, the cell-cell adhesion between formerly epithelial-like

cancer cells, which is predominantly enforced via E-cadherin, gap junctions80

and tight junctions, is reduced together with their expression of epithelial in-

tegrins. Instead, cell-matrix adhesion enhancing molecules like N-cadherin and

integrins that are specific to extracellular components on the cell membranes are

expressed. Moreover, during EMT the actin cytoskeleton remodels into stress

fibres that accumulate at the areas of cell protrusions, and epithelial cytokeratin85

intermediate filaments are increasingly replaced by vimentin [4]. As part of this

combination of changes, the characteristic polygonal cobblestone-like cell shape

of epithelial cells is progressively replaced by a spindle-shaped morphology. Fig-

ure 1 schematically shows the changes that cells undergo when switching from

an epithelial-like (left) to a mesenchymal-like (right) phenotype. Furthermore,90

during the EMT process, the motility and invasiveness of the cancer cells are

enhanced [25, 11] and the cells become increasingly potent at degrading the un-

derlying basement membranes of organs and vessels as well as the ECM via the

expression of metalloproteases (MMPs) [11]. There are 23 known MMPs [26],

which are able to degrade the vast majority of surrounding tissue in humans95

[27]. These can further be grouped into soluble MMPs, like MMP-2 or MMP-9,

which are secreted into the surrounding tissue by cancer cells, and membrane-

bound MMPs, which remain attached to the cell membrane. Amongst the lat-

ter, MT1-MMP is particularly well-investigated [28]. Moreover, experimental

results by [29] suggest that this membrane-bound MT1-MMP is both necessary100

and sufficient for cell invasion to occur.

Through MET the phenotypic changes induced by EMT can be reversed. Thus—

generally speaking—MET causes the cells to become less motile and invasive

while enhancing their proliferative potential.

A non-reversible, stable transition from an epithelial to a mesenchymal pheno-105

typic state, which had formerly been assumed to be the only possible outcome
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of EMT, has recently been shown to actually be rare during carcinogenesis [11].

Instead, a plasticity to switch between the two phenotypic states through EMT

and MET is suggested to exist for most invading cancer cells [30, 31].

During local cancer invasion, some cancer cells in the tissue have been found to110

be of mesenchymal phenotype [32]. Hence, EMT in at least a subset of the ini-

tially epithelial-like cancer cells at the primary site is a prerequisite for invasion

[33, 34]. Migrating cells usually employ their acquired mesenchymal traits, i.e.

the decrease or loss in cell-cell adhesion and increase in cell-ECM adhesion and

in MDE-expression, to invade [32, 35]. The proliferation-enabling MET, on the115

other hand, is involved in metastatic colonisation in most carcinomas. In fact, it

has been suggested that stable mesenchymal-like phenotypes without any MET

potential cannot succeed in metastatic re-seeding [20, 36, 37].

The focus of this paper lies on the invasion of OSCC, the most common type of

head and neck squamous cell carcinoma (HNSCC) [38]. In HNSCC, distal organ120

metastasis occurs rarely compared to other cancers. Instead, local progression

is a major cause of HNSCC-related mortality [16]. A study by [16] suggests that

the mechanism behind the aggressive local spread observed in HNSCC is the

induction of MET in the tumour microenvironmemt rather than at the distal

sites, as typically observed in carcinomas [11]. This results in the inhibition of125

migration for HNSCC cells—such as the HSC-3 cells modelled in this paper—

through connective tissue growth factors in the microenvironment of a primary

tumour. Thus, MET enables faster growth of the formerly individually occurring

cancer cells that were previously of an invasive mesenchymal phenotype. An

often-observed phenomenon in OSCC, as well as other types of carcinomas [39,130

40, 41], is the occurrence of “islands” of cancer cells outside of the main body

of the tumour [15, 42]. Notably, in OSCC, the “island” count has, through a

number of studies, been confirmed to be a reliable and simple prognostic marker

that correlates with poor prognosis [42].
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2.1. An in vitro organotypic invasion assay study135

In this section, we introduce the three-dimensional organotypic invasion assay

experiment by [15]. This is the experiment that we subsequently reproduce

through the mathematical model for cancer invasion of the ECM, showing that

this model provides biologically accurate predictive results. The experiment by

[15] studies the invasion of human tongue squamous cell carcinoma cells of the140

cell line HSC-3 into uterine leiomyoma tissue. As they show in the corresponding

paper, this mimics the in vivo invasion of the tumour microenvironment in

OSCC.

In what follows, a description of the experimental setup of the invasion organ-

otypic assays in [15], their experimental results and the methods of result quan-145

tification is given.

For the organotypic culture, [15] selected only non-degraded human uterine

leiomyoma tissue, in the preparation of which any areas with macroscopically

heterogeneous tissue were omitted. The suitable tissue was cut into 3 mm thick

slices. From these slides, discs of 8 mm diameter were punched. Then, 7× 105150

human tongue squamous cell carcinoma cells of line HSC-3 were allowed to

attach to the top of each myoma disc overnight. Subsequently, the myoma discs

were transferred onto uncoated nylon discs that rested on curved steel grids in

12-well plates with sufficient volume of media.

At days 2, 8 and 14, the organotypic cultures, which all stemmed from the155

same myoma to minimise differences in tissue, were formalin-fixed. Then they

were dehydrated, bisected and embedded in paraffin. Next, they were sectioned

into slices of 6µm thickness and immunostained according to the question the

authors sought to address. For the main invasion experiment, which our model

focusses on, pancytokeratin AE1/AE3 was used, which stains epithelial-derived160

HSC-3 cells brown.

Quantification of experimental results. The top row in Figure 6 shows micro-

scopic fields with pancytokeratin AE1-/AE3-stained organotypic assays, that
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Figure 2: Quantification of the organotypic invasion in [15] and in Section 2.1. The

measurements of maximal invasion depth, invasion area, and invasion index were taken from

myoma tissue on day 14 of the invasion. The central rectangles span from the first to the

third quartile. The segment inside the rectangle shows the median. The whiskers represent

the locations of the respective minimum and maximum. Suspected outliers are indicated by a

circle and outliers by a star. The results for the maximal invasion depth consist of at least

three measurements, cf. Figure 3, of two to eight slices from two to four independent assays.

For the invasion area and index, one measurement per representative area was taken from

each of the two to eight slices from the two to four independent assays. This figure is modified

from [15] with permission from Elsevier.((pending))
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Figure 3: Maximal invasion depth.

The invasion distances of the three

epithelial-like HSC-3 cells that invaded

furthest into the myoma—measured per-

pendicularly to the top edge of the micro-

scopic field—were measured as indicated

by the red line. Next, their mean was cal-

culated as described in [43].

Figure 4: Invading vs. non-invading

cell area. The area of the upper non-

invading epithelial-like HSC-3 cell layer is

shown in white; the area that is occupied

by invading epithelial-like HSC-3 cells is

shown in red. Cells of mesenchymal-like

phenotype were not accounted for in the

determination of the respective areas.

initially consisted of a single HSC-3 cell layer on top of visually homogeneous

myoma tissue, at day 2, 8 and 14 (left to right).165

Quantitatively, invasion results were measured using three “norms”: the max-

imal invasion depth, the invasion area and the invasion index, as shown in

Figure 2 (left to right). To determine the maximal invasion depth for each

slice, the distances of the three HSC-3 cells that had invaded furthest from the

myoma surface—measured perpendicularly to the top edge of the microscopic

field—were measured using Fiji software, as shown in Figure 3, and the mean

of the distances was calculated, as described in [43]. This was repeated for 3

to 8 slices from the same myoma disc and then averaged. Using this method in

this experiment, the maximal invasion depth was found to be 547 µm, with an

interquartile range of 61 µm. To calculate the invasion index, cf. [44], [15] first

quantified the area of the upper non-invading cell layer, which corresponds to

the respective area coloured in white in Figure 4 in each microscopic field, as

well as the area occupied by the sum of the remaining invading epithelial-like

HSC-3 cells, which is highlighted in red in the same figure. These measurements
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were, again, taken from 3 to 8 slices of the same myoma to determine the mean

area of the upper non-invading cell layer (Ainv−) and the mean invading cell area

(Ainv+), respectively. The invasion index (I) was then calculated as

I =
Ainv−

Ainv+ +Ainv−
,

which gave I = 0.51 [0.41, 0.60] in this particular experiment.

3. Model description

The model we propose is a three-dimensional, hybrid atomistic-continuum that

accounts for the collective epithelial and the individual mesenchymal invasion

strategies, as well as for the EMT and MET between these two phenotypic170

cell states. The proposed model is based on a two-dimensional cancer invasion

model introduced in [14]. Besides the extension to a third dimension, the current

model features the production and action of membrane-bound MT1-MMPs, the

migration of the mesenchymal-like cancer cells and, most importantly, the tran-

sition between the two phenotypic states. Moreover the parameters of the model175

are calibrated via parameter estimation and sensitivity analysis to accurately

represent the organotypic HSC-3 invasion assay experiments by [15].

We formulate a hybrid atomistic-continuummodel in the sense that the epithelial-

like cancer cells are described by a continuum density distribution whereas the

mesenchymal-like cancer cells are modelled as a collection of isolated cells. To180

emphasize their discrete nature, we from now on refer to the latter as cell-

particles.

Epithelial-like cancer cells typically appear as cell sheets with strong intercellu-

lar adhesions and, accordingly, their time evolution is modelled by a system of

PDEs. The cell-cell adhesions are diminished through EMT. This causes result-185

ing mesenchymal-like cancer cells to typically appear individually, cf. Figure 1.

Their time evolution is modelled by a system of SDEs. The cell-cell adhesions

and hence the epithelial phenotypic state can be regained via MET. These PDE

10



and SDE submodels are coupled through the density-to-cell-particle and cell-

particle-to-density operators, cf. Appendix A, that model the transitions from190

one phenotypic state to the other.

Density-based submodel. Through the density description and a system of macro-

scopic deterministic PDEs, in particular, we model the spatio-temporal evolu-

tion of the epithelial-like cancer cells, the membrane-bound MT1-MMPs and

the ECM. We assume that the epithelial-like cancer cells compete for space and195

resources with the mesenchymal-like cancer cells and the ECM. No active mi-

gration of the epithelial-like cancer cells is assumed—neither in the form of a

directed response to extracellular chemo- or haptotaxis cues nor in the form of

random cell migration. Still, we make the assumption that the epithelial-like

cancer cells proliferate and that this introduces small mechanical pushing forces200

between them. This is incorporated into the model through a small diffusion

term.

We denote by Ω ⊂ R3 a Lipschitz domain suitable for the experimental settings

and by cE(x, t), cM(x, t), m(x, t) and w(x, t), where x ∈ Ω and t ≥ 0, the densi-

ties of the epithelial-like cancer cells, the mesenchymal-like cancer cells (when-205

ever applicable), the non-diffusible MT1-MMPs and the ECM, respectively. The

subscript E indicates the epithelial phenotype and M the mesenchymal phenotype

throughout the paper.

The mesenchymal-like cancer cells are primarily described through their cell-

particle formulation. However, the mesenchymal-like cancer cells participate in210

the time evolution of the epithelial-like cancer cells, which are described by a

density formulation, via their density formulation cM. This is obtained by the

cell-particle-to-density process explained in Appendix A.

The above considerations are incorporated in the following PDE that governs
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the spatio-temporal evolution of the density cE of the epithelial-like cancer cells:

∂

∂t
cE(x, t) = DE∆cE(x, t)︸ ︷︷ ︸

diffusion

− νEMT
E (x, t)cE(x, t)︸ ︷︷ ︸

EMT

+ νMET
M (x, t)cM(x, t)︸ ︷︷ ︸

MET

+ ρE
c cE(x, t) (1− cE(x, t)− cM(x, t)− w(x, t))︸ ︷︷ ︸

proliferation

, (1)

where νEMT
E (x, t) = νEXE(t)(x) and νMET

M (x, t) = νMXM(t)(x), with E(t),M(t) ⊂

Ω, and DE, νE, νM, ρE
c ≥ 0. For simplification, we assume that the EMT takes215

place in randomly chosen sets, denoted by E(t) ⊂ Ω. We understand E(t) as

the set union of a number of sub-sets each having the size of one biological

cell, cf. Appendix A. Similarly, we make the simplifying assumption that the

mesenchymal-like cancer cells, modelled as isolated cell-particles, undergo MET

in a random fashion. This gives rise to M(t), which is another union of sub-sets,220

each of the size of a single cancer cell, cf. [14].

We also assume that the mesenchymal-like cancer cells produce non-diffusible

MT1-MMPs that are expressed on the cell membranes. Furthermore, for sim-

plicity, we let all mesenchymal-like cells express the same fixed number of MMPs

on their membrane. We denote by m the density of MMPs and account for them225

through

m(x, t) =
∑

p∈P
dXKp(x, t), (2)

where Kp represents the physical space occupied by the mesenchymal-like cells

with index p; XKp is the corresponding characteristic function; and d represents

the “number” of MMPs expressed on the cells’ membrane.

The ECM is assumed to be an immovable component of the system that neither230

diffuses nor otherwise translocates. It is moreover assumed not to be recon-

structed in any way. It is degraded by the action of the mesenchymal-like

cell/MMP-complexes. Altogether the ECM is described by a (non-uniform)

density profile that evolves in time according to

∂

∂t
w(x, t) = −λd

∑

p∈P
XKp(x, t)w(x, t) (3)

where λd = λw d is the effective degradation rate of the ECM.235
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Cell-particle based submodel. The spatio-temporal evolution of the mesenchymal-

like cancer cells is dictated by the cell-particle based submodel. Similarly to the

rest of the model, the methods and techniques used here are motivated by the

work in [14] and the references therein.

The mesenchymal-like cancer cells are modelled as a collection of isolated cell-240

particles that migrate through the tissue while performing a biased random

motion. The biased part of their motion is due to their haptotactic response

to gradients of the ECM, while the random part is understood as a Brownian

motion. In the current model no interaction between the mesenchymal-like cells

is assumed.245

At any given time t, we consider a system of N = N(t) ∈ N mesenchymal-like

cancer cells, indexed by p ∈ P = {1, . . . , N}, and we account for their positions

xp(t) ∈ R3, and masses mp(t) ≥ 0. Their migration is modelled by a system

of SDEs—one SDE for each cell-particle—and is comprised of a combination of

two independent processes: a directed motion component that represents the250

haptotactic response of the cells to gradients of ECM-bound adhesion sites, and

a random motion component that is modelled as a Brownian motion:

dXp
t = µ(Xp

t , t)dt+ σ(Xp
t , t)dW

p
t , for p ∈ P, (4)

where Xp
t represents the position of the cell-particles in physical space (here

R3), and Wp
t is a Wiener process. The drift term µ encodes the directed (or

biased) part of the motion, whereas the diffusion term σ encodes its random255

component.

The mesenchymal-like cancer cells participate in several dynamical processes,

e.g. in the EMT and MET, in the proliferation of the epithelial-like cancer cells,

in the production of MMPs, and in the degradation of the ECM. Yet, the cell-

particle migration equation (4) does not include any reaction terms. Instead,260

these are accounted for in the following way: as mesenchymal-like cancer cells

undergo MET and acquire epithelial-like character, they are transformed to a

density profile via the density-to-particle operator, cf. (7) and Appendix A.
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This additional epithelial-like cell density augments the existing epithelial-like

cell density and participates in the dynamics modelled through the system of265

equations (1)–(3). Conversely, parts of the epithelial-like cancer cell density un-

dergo EMT and transform into mesenchymal-like cancer cells, which are initially

described by a density profile. This density is then transformed into particles

via the particle-to-density operator defined in (7) and Appendix A.

Hybrid formulation of cancer cells. We assume that the domain Ω is sufficiently270

large and regular to be uniformly partitioned as Ω =
⋃

i∈I Mi, where every Mi,

i ∈ I is a translation of a generic cube K0 ⊂ R3, representing the volume

occupied by a single biological cell. This partition allows to represent every

scalar (measurable) density function c : Ω × (0,∞) → R by its simple-function

decomposition275

∑

i∈I

ci(t)XMi(x), (5)

where XMi is the characteristic function of Mi ⊂ Ω, and ci(t) the mean value

of c(·, t) over Mi, i.e.

ci(t) =
1

K

∫

Mi

c(x, t)dx, (6)

where K is the volume of K0 and, effectively, of Mi.

Accordingly, the hybrid description upon which this work is based reads

(xp(t), mp(t))←→
mp(t)

K
XKp(x), p ∈ P, (7)

where xp(t) and mp(t) represent the time-dependent position and mass of the280

cell-particle; Kp is the translation of the generic cube K0 with centre xp; and

K = |Kp| = |K0| is the volume of these cubes. Based on (7), the transition

between the two cell phases is conducted by the particle-to-density and the

density-to-particle transition operators, see Appendix A.

4. Model initiation and parametrisation285

We set the state variables and parameters of our model according to the exper-

imental settings introduced for the invasion assay experiments in [15]. In what
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follows, we explain how we reproduce the experiments in detail. Note that all

model simulations, including the parameter estimation and the sensitivity anal-

ysis, were conducted using MATLAB [45], and all visualisations with ParaView290

[46].

4.1. Initial and boundary conditions

The ECM is represented by a three-dimensional landscape that is initially ran-

domly structured with values between a biologically relevant minimum and

maximum ECM density, in accordance with [47]. The construction of the ini-295

tial ECM density is computational, inductive, and based on discrete principles.

Namely, an initial 8×8×8 random matrix with normally distributed values be-

tween the predefined minimum and maximum density values is refined through

bisection to 16× 16× 16 then to 32× 32× 32 and so on until the computational

resolution of the domain Ω is reached. At every refinement stage, the new val-300

ues are interpolated from the previous ones with the addition of some Gaussian

noise. A two-dimensional representation of this procedure is shown in Figure 5.

In accordance with the experiments by [15], where a layer of 7× 105 epithelial-

like cancer cells and no mesenchymal-like cancer cells were placed on top of the

myoma discs, we consider a single layer of epithelial-like cancer cells placed onto305

the upper surface of the ECM.

Throughout this work, we consider zero Neumann boundary conditions for the

epithelial-like cancer cell density. No boundary conditions are assumed for the

ECM as it has been modelled as an immovable component of the system. We do

not impose any boundary conditions on the MMPs since the particular family310

we consider in this model, MT1-MMP, is bound to the cancer cell membrane.

Furthermore, no mesenchymal-like cell-particle is allowed to leave the domain

Ω. Instead, every time a cell-particle escapes, it is returned to its last known

position within Ω and is allowed to resume its biased random motion (4).
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8 × 8 16 × 16 32 × 32

64 × 64 128 × 128 256 × 256

Figure 5: Construction of a sample initial ECM density distribution in two dimen-

sions. An initial 8×8 random matrix (top left) is refined progressively to a 256×256 matrix

(bottom right). At every refinement step, the density values of the refined matrix are obtained

from the predecessing coarser matrix by interpolation and periodic extrapolations. The result

is a sample two-dimensional initial ECM density distribution with values between wmin and

wmax, cf. Table 1 and [47]. In the current work, the corresponding process was carried out

in three dimensions with a final refinement of 64× 64× 64.
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Table 1: Parameter settings for the simulations. Epithelial-like HSC-3 cells and

mesenchymal-like HSC-3 cells are abbreviated ECC and MCC, respectively.

Description Value Range Reference

D E ECC density diffusion coefficient 8.64× 10−8 cm2 d−1 1× 10−9 — 1× 10−12 cm2 s−1 [48]

[49]

ρ E
c ECC density proliferation 1.2 d−1 [50]

coefficient

σ MCC particle diffusion coefficient 3.3675 cmd−1/2 Parameter estimation

µ MCC particle drift coefficient 7.4595× 10−2 cm2 d−1 Parameter estimation

s maximum MCC particle speed 2.16 cmd−1 1.83× 10−5 — 3.83× 10−5 cm s−1 [51]

mref MCC particle reference mass 2.3× 10−9 g cell−1 2.3× 10−9 — 3.3× 10−9 g cell−1 [52]

|V0| MCC particle reference volume 2.3× 10−9 cm3 2.2× 10−9 — 5.2× 10−9 cm3 [53]

νE EMT rate 7.502× 10−2 Mcm−3 d−1 Parameter estimation

νM (individual) MET rate 4.7697× 10−1 d−1 Parameter estimation

wmax Maximum (initial) ECM density 1.06 g cm−3 1.02 — 1.05 g cm−3 [47]

λw ECM degradation rate 1.8383× 10−4 Mcm−3 d−1 Parameter estimation

by ECCs & MCCs

4.2. Model parameters315

To ensure that our simulations are biologically realistic, we use parameter values

from the literature wherever possible. These are summarised in Table 1 together

with the corresponding literature sources. Still, five of the parameters could not

be obtained from the literature and had to be indirectly inferred. To this end,

and due to the inherent stochasticity of the model, we used a combination of320

global and local optimisation techniques, which we augmented with a sensitivity

analysis.

4.2.1. Parameter estimation

The five parameters that need to be indirectly inferred are the ECM degradation

rate λw, the drift and diffusion coefficients of the mesenchymal-like cancer cell-325

particles ( σ and µ), and the EMT and MET rates νE and νM, cf. Table 1.

As the global optimisation method we use enhanced scatter search (eSS) [54].

It belongs to the wider class of stochastic global optimisation methods called

metaheuristics [55]. Like other stochastic optimisation methods, eSS draws an

initial diverse population of guesses out of the parameter space and conditionally330
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initiates intense local searches. For the local optimisation we implement the

interior point method, cf. [56, 57]. This is an iterative linear and non-linear

convex optimisation method that achieves its goal by going through the middle

of the bounded multidimensional polyhedron in the parameter space. Due to

the robustness of the method, it is well-suited for a problem of mixed stochastic-335

deterministic nature like the one addressed in this paper. For the metaheuristic

part, we use the metaheuristics for bioinformatics global optimization (MEIGO)

toolbox [58].

The set of five parameters to be inferred is denoted as

Pest =
{
pesti , i = 1 . . . 5

}(
def.
=

{
λw,σ, µ, νE , νM

})
, (8)

and is estimated through the minimisation of the discrepancy/error between the340

experimental measurements and the model predictions. This error is measured

by the objective functional

Eobj
X =

∣∣|Wmea|X − |Wmod|X
∣∣ . (9)

The “norm” |Wmea|X denotes the experimentally measured quantities, indicated

here by the subscript |·|X. |Wmod|X on the other hand denotes the corresponding

quantity predicted by the model. For the purpose of this work, we considered345

“norms” such as the maximal invasion depth of the epithelial-like cancer cells,

their invading cell area, and combinations of these, cf. Section 5.1, in accor-

dance with [15]. The experimental meaning of these quantities is explained in

Section 2.1, and in Figures 3 and 4.

4.2.2. Sensitivity analysis350

Each of the model parameters, especially the ones inferred by the parameter

estimation, has a different impact on the dynamics of the model. A profound

understanding of the effect of the model parameters is crucial both for drawing

biological conclusions and for quantifying the corresponding biological processes.

Moreover, the sensitivity analysis is useful for the calibration and further devel-355

opment of the model.
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We study the qualitative and quantitative impact of the parameters by per-

forming a local sensitivity analysis. We first consider a particular experimental

setting and a reference parameter set. This parameter set is obtained through

the previously discussed parameter estimation methods. We then vary the pa-360

rameters in the reference set one after the other and compute the corresponding

numerical solutions of the model. As the problem is stochastic in nature, we

repeat every numerical experiment (i.e. with the same settings and parameters)

several times and average the corresponding results. We compare each of these

solutions to the reference solution through the chosen objective functional (9).365

This way, we quantify the effect that the variation of this parameter has on the

solution.

In more detail, we denote the parameters whose effect we study as

Psens =
{
psensi , i = 1, ..., 5

}(
def.
=

{
λw,σ, µ, νE , νM

})
, (10)

and the reference parameter set as

Pref =
{
prefi , i = 1, ..., 5

}
(11)

and use it to compute the reference solution Wref. Ceteris paribus, we perturb370

the reference parameters prefi ∈ Pref, which gives new values pperi . For each

perturbation of the parameters, the new parameter set is denoted as

Pper
i =

{
pperi , i = 1, ..., 5

}
, (12)

which differs from the reference set Pref (11) only for the parameter i. With

the perturbed parameter set Pper
i , and otherwise the same model conditions

(initial, boundary, etc.), we compute the corresponding solution Wper
i . We then375

compare Wper
i to the reference solution Wref. For this, we use the sensitivity

function

Si =

∣∣|Wper
i |X − |Wref|X

∣∣
∣∣pperi − prefi

∣∣ , (13)

where | · |X denotes a suitably chosen “norm”, cf. Section 5.1. In essence, as

defined in (13), Si represents the absolute rate of change of the solution W,
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in the sense of the “norm” | · |X, with respect to the parameter i around its380

reference value prefi .

The local sensitivity follows from accounting for all the parameters of Psens.

It can be used to deduce qualitative and quantitative biological information.

For instance, it lets us rank the influence of various parameters on the system.

This, in turn, enables us to gain a more comprehensive understanding of how385

the different parameters and their variation impact the simulation results.

5. Simulations and results

To perform the numerical simulations, we replicated the experimental setting

used in [15] as closely as possible. Accordingly, we reconstructed qualita-

tive features of the myoma organotypic assays described therein by using re-390

sults by [47] on the average density of human uterine ECM and by repro-

ducing the homogeneity of the ECM. This is described in Section 4 and Fig-

ure 5. Secondly, we have conducted our simulations over a cubic domain of

size 8500µm × 8500 µm × 8500 µm, similar to the assays used in [15]. In the

experiments, this domain was cylindrical with a diameter of 8000 µm and a395

height of 3000 µm. However, the 6µm thick slices that were ultimately anal-

ysed in [15] were only of size 600 µm× 600 µm and were taken perpendicular to

the myoma disc surface. As Figure 6 shows, we examined slices of dimension

600 µm × 600 µm × 6 µm from the larger three-dimensional domain. The ini-

tial conditions we considered correspond to those in the experiments by [15] for400

which 7 × 105 epithelial-like and no mesenchymal-like cancer cells were placed

on top of a myoma disc as a single layer.

Primarily due to the diffusion term, (1) causes a slight propagation of the

epithelial-like cancer cell front in the mathematical model. This becomes ap-

parent mostly in the earlier stages of the time evolution before new cancer-cell405

“islands” are formed. At the same time, isolated mesenchymal-like cancer cells

arise due to EMT. These are modelled as cell particles whose migration is dic-

tated by (4) and are indicated by red dots in Figure 7.
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(a) t = 2d (b) t = 8d (c) t = 14d

Figure 6: Experimental in vitro versus model simulation results for HSC-3 myoma

invasion. The spatio-temporal evolution of an initially uniformly dense epithelial-like cancer

cell population placed on top of an ECM of heterogeneous density is depicted after 2, 8, and

14 days. Experimental results of HSC-3 myoma invasion assays by [15] are shown in the

top row of panels and the corresponding sample simulation results in the bottom row. All

panels show slices of a three-dimensional assay; each of size 600 µm × 600 µm and 6 µm of

thickness. In the simulation results (second row), the epithelial-like cancer cells density is

represented via the yellow-orange isosurfaces corresponding to 0.1 (and higher) of the average

tumour density. The colour bar corresponds only to the density of the ECM; the maximum

value being the biological relevant 1.06 g cm−3, cf. Table 1. EMT spawns mesenchymal-like

cancer cells (not depicted here), which escape the main body of the tumour and invade the

ECM more rapidly than the slowly diffusing epithelial-like cancer cells. The reverse process,

MET, gives rise to the epithelial-like cancer cell “islands” observed in the middle and right

panels. As seen in the 14 d panels, these “islands” eventually reconnect with the main body

of the tumour. The top row panels are modified from [15] with the publisher’s permission

((pending)).
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Figure 7: 3D myoma invasion simulation. Shown is an indicative final time (t = 14d) 3D

model simulation result. The ECM density is shown in the background planes and corresponds

to the colour bar on the right; the epithelial-like cancer cell density is visualised through

contour surfaces corresponding to 0.1 of the average tumour density; the mesenchymal-like

cancer cell particles are visualised as red dots. The experimental settings, initial conditions,

and parameter values are discussed in Section 5 and Table 1. The size of the domain is

600 µm× 600 µm× 600 µm. A plethora of bio-medically relevant information can be extracted

and studied from such simulation results, cf. Figures 8, 9 and Section 6.

The migration of mesenchymal-like cancer cell particles takes the form of a

haptotaxis-biased random motion, which is modelled by the system of SDEs410

(4). These cell particles escape from the main body of the tumour and, as they

invade the ECM, they can undergo MET and give rise to new epithelial-like cell

densities. The spatio-temporal evolution of these newly formed cell densities

is then once again governed by the continuum model (1)–(3). Primarily due

to proliferation and diffusion, these newly formed densities grow to become415

invasion “islands” that grow away from the non-invasive part of the tumour

located on top of the ECM. According to the growth of these “islands”, they

can be categorised into:

– Should they be sufficiently close to the top of the assay, these “islands”

may merge with the upper layer of epithelial-like cancer cells on top of the420

ECM. They are then considered part of the non-invading tumour mass.
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(a) Whole surface (b) Close-up view

Figure 8: 3D myoma invasion viewed from above. When viewed from above, the myoma

invasion at day 14, which is also shown in Figure 7, presents the structure of the main body of

the tumour as it grows due to proliferation and merging of the cancer cell “islands”. The de-

tailed view (b) gives insight into the “inner” structure of the tumour. Like in previous figures,

the epithelial-like cancer cell density is visualised through contour surfaces corresponding to

0.1 of the average tumour density.

– The islands are considered as a part of the invading tumour if they grow at

a sufficiently large distance from the top of assay so they have not merged

with the non-invading tumour mass.

We refer also to Figure 4 for the description and definition of the invading versus425

non-invading cell area as applied both in the analysis of the experimental results

by [15] as well as in our analysis of the model and simulation results.

5.1. Results

Through the simulations that we carried out, we found that the proposed three-

dimensional hybrid model provides qualitatively and quantitatively biologically430

realistic results. This holds in particular, when the simulation results are com-

pared against the organotypic in vitro HSC-3 invasion assays described in [15].

The simulation results shown in Figure 6 were conducted using the estimated

parameter values in Table 1. Five of these, i.e. the parameters (8), were obtained

by minimising the discrepancy between the simulations and the experimental435

measurements using a combination of the maximal invasion depth, the total
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(a) Zoomed out view (b) Close-up view

Figure 9: 3D myoma invasion viewed from the inside. When viewed from inside the

assay, the epithelial-like cancer cell density on day 14, which is also shown in Figure 7, reveals

a variable structure of tumour growth. Newly formed epithelial-like invasion “islands” form

and grow, and merge either with the initial/main body of the tumour (a) and/or with each

other (b). Like in previous figures, the epithelial-like cancer cell density is visualised through

contour surfaces corresponding to 0.1 of the average tumour density.

non-invading area, and the invasion index “norms”. All of these are defined

below.

In the experimental setting by [15], these quantities were measured as ex-

plained in Section 4.2 and Figures 3 and 4. The quantification of the ex-440

perimental results after 14 days is visualised in Figure 2, yielding a median

of 5.4700× 10−2 µm for the maximal invasion depth of the epithelial-like can-

cer cells, and of 3.5270× 10−4 µm2 and 3.6710× 10−4 µm2 for their total non-

invasive and invasive area, respectively.

Through the parameter estimation and sensitivity analysis processes, we have445

obtained the corresponding values 7.0130× 10−2 µm, 3.9884× 10−4 µm2 and

3.0398× 10−4 µm2, respectively. It is worth noting that the maximal inva-

sion depth in the experiments of [15] was measured as the mean of the three

epithelial-like cancer cells that had invaded the domain the furthest. To ensure

that our work represents the experimental measurements as closely as possi-450

ble, we adopted this approach when measuring the simulation outcomes. To

measure these particular quantities in our simulations, we first extracted nine

vertical slices from the middle of the three-dimensional epithelial-like tumour
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density profiles. We then computed the above quantities in each of these slices

as follows:455

Non-invading area: We measure the non-invading area of the tumour as the

area of the connected upper part of the epithelial-like density profile.

Invading area: The invading area of the tumour is computed by subtracting

the non-invading area of the tumour from the overall area of epithelial-like

density profile.460

Maximum invasion depth: The maximum invasion depth is measured as the

vertical distance between the invading epithelial-like cells and the lower

boundary of the non-invasive area. To comply with the experimental

methods, cf. Figure 3, we also compute the mean of the three largest

invasion depths in every slice.465

Invasion index: As in [15], the invasion index is defined through the relation

invasion index = 1− non-invading area

invading area + non-invading area
. (14)

We use the above quantities, as well as (9), to compute the error/discrepancy

between the experimental and simulation measurements. As these are absolute

errors, they do not allow for a direct comparison between the corresponding

quantities. So instead we define the relative errors470

Erel
X =

∣∣|Wmea|X − |Wmod|X
∣∣

|Wmea|X
, (15)

i.e. the ratio of the absolute error (9) between the experimental and simulation

measurements over the experimental measurements. Representing by X = 1, 2, 3

the maximum invasion depth, the invasion area, and the invasion index, we

determine the relative root mean square (RMS) of the errors Erel
X as

ERMS =

√√√√1

3

3∑

X=1

(Erel
X )2. (16)

We used this relative RMS error (16) for the parameter estimation and sensi-475

tivity analysis of the model.
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As an a posteriori study, we also estimated the backwards and forwards sensi-

tivity gradients. These were obtained by varying each of the parameters to half

(×0.5) and, respectively, double (×2) their reference value prefi , while retain-

ing all other parameters at their reference values, and subsequently computing480

the sensitivity gradients (13). This way, we gained two additional pieces of

information:

a) the signs of the backward and forward gradients indicate whether the refer-

ence value prefi is (close to) the minimizer. A combination of negative-positive

signs implies that the sensitivity decreases-increases around the reference value.485

A change in the sign of the sensitivity gradients implies that the sensitivity

decreases and then increases, or vice versa, around the reference value.

b) The magnitudes of the two gradients indicate the sensitivity of the result to

the variation of the parameter pi along the corresponding direction.

Insights from the parameter sensitivity analysis. As discussed in Sec-490

tion 4.2.2, we slightly vary each of the model parameters Psens (10)—one af-

ter the other—around their respective reference value Pref (11). Due to the

stochastic nature of the problem, the simulations were repeated 20 times for

each parameter set. This is also highlighted in the Figures 10 and 11. The

analysis yielded the following results, which are visualised in Figure 10:495

ECM degradation rate (psens1 = λw): The sensitivity analysis results are shown

in Figure 10a. The corresponding sensitivity gradients were -110.2882 and

80.5483, respectively, for the experiments conducted with values 0.5pref1

and 2pref1 with pref1 = 1.8383 × 10−4 M cm−3d−1. The change in the sign

of the sensitivity gradients implies that the minimum of the relative RMS500

error (16) is attained around the reference value pref1 . This is an indication

that the reference parameter was sufficiently well estimated. Furthermore,

the strong gradients imply that the relative RMS error is quite sensitive

to the ECM degradation rate λw.
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Figure 10: Sensitivity analysis. The subplots show the impact that the perturbation of each

one of the five estimated parameters Psens = {prefi , i = 1, . . . , 5} (10), from their reference

values (green lines) to their perturbed states 0.5prefi (red lines) and 2prefi (blue lines) has on the

relative RMS error (16) (vertical axes). Due to the inherent stochasticity of the model, each

experiment is repeated 20 times (horizontal axes) for the same parameter set. The resulting

average values are depicted by the corresponding dashed lines. In all subplots the reference

states (green lines) are the same. It can be seen that the relative RMS error is more sensitive

to variations of the EMT and MET rates shown in panels (d) and (e) than to the ECM

degradation rates in panel (a). Similarly, we note that the average sensitivity of the relative

RMS error to cell-particle diffusion and adhesion coefficients in panels (b) and (c) is similar.

(a) ECM degradation rate (psens1 = λw) (b) Cell-particle diffusion coefficient (psens2 = σ)

(c) Cell-particle adhesion coefficient (psens3 = µ) (d) EMT rate (psens4 = νE)

(e) MET rate (psens5 = νM)
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Cell particle diffusion coefficient (psens2 = σ): The sensitivity analysis re-505

sults are shown in Figure 10b. The sensitivity gradients were 0.0033 and

0.0032, respectively, for the experiments conducted with values 0.5pref2 and

2pref2 with pref2 = 3.3675 cmd−
1
2 . The two positive signs imply that the er-

ror increases with the parameter. This should serve as an indication to

reduce the reference parameter value pref2 = 3.3675 cmd−
1
2 and to perform510

the sensitivity analysis again thereafter. However, as the magnitude of

the gradients—and hence the sensitivity to this particular parameter—is

small, no strong benefit is to be expected. Hence, we conclude that the

reference parameter value pref2 is acceptable.

Cell particle drift coefficient (psens3 = µ): The sensitivity analysis results are515

shown in Figure 10c. The corresponding sensitivity gradients were -0.3658

and 0.2830 for the experiments conducted with values 0.5pref3 and 2pref3 with

pref3 = 7.4595× 10−2 d−1. As in the case of the ECM degradation rate λw,

the change in sign indicates that the minimiser is (close to) the reference

value pref3 . However, by direct comparison to the ECM degradation rate520

λw, we deduce that the relative RMS error (16) is less sensitive to this

parameter.

EMT rate (psens4 = νE): The sensitivity analysis results are shown in Figure 10d.

The sensitivity gradients were -3.3807 and 8.2855, respectively, for the ex-

periments conducted with values 0.5pref4 and 2pref4 with pref4 = 7.502 ×525

10−2 Mcm−3 d−1. Again, the change in sign indicates that the minimiser

of the relative RMS error is attained around the reference value pref4 . More-

over, the relative RMS error (16) is more sensitive to the EMT rate νE

than to the particle drift coefficient σ but less sensitive than to the ECM

degradation rate λw.530

MET rate (psens5 = νM): The sensitivity analysis results are shown in Fig-

ure 10e. The sensitivity gradients were -0.2091 and 0.2201, respectively,

for the experiments conducted with values 0.5pref5 and 2pref5 for pref5 =

4.7697 × 10−1 d−1. As before, the change in sign indicates that the min-
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Table 2: Summary of the backward and forward sensitivity gradients with respect to the five

model parameters Psens (10) around their respective reference value Pref (11). The ± sign of

the gradients indicates the direction of increase or decrease respectively of the relative RMS

error (16), and their magnitude the absolute sensitivity of the relative RMS error to changes

of the corresponding parameter.

backward forward

λw -110.2882 80.5483

σ 0.0033 0.0032

µ -0.3658 0.2830

νE -3.3807 8.2855

νM -0.2091 0.2201

imiser of the relative RMS error is (close to) the reference value pref5 =535

4.7697 × 10−1 d−1. Moreover, the relative RMS error is less sensitive to

the MET rate νM than to the ECM degradation rate λw, the particle drift

coefficient µ, and to the EMT rate νE .

As summarised in Table 2, the sensitivity analysis has shown that the parameter

values P sens (10) that we determined through the parameter estimation, cf. Ta-540

ble 1, are sufficiently close to the minimiser of the relative RMS error. Hence,

they are a good fit to the model. Furthermore, the relative RMS error shows

different degrees of sensitivities to the different parameters. Ordering the five

parameters according to the apparent sensitivity of the relative RMS error, we

get (from least to most): particle diffusion coefficient σ, MET rate νE , particle545

adhesion coefficient µ, EMT rate νE , and ECM degradation rate λw.

It is worth noting that we have opted to minimise the relative RMS error (16),

rather than its constituent relative errors ei, i = 1, 2, 3, as we aimed to account

for all of the quantitative output provided in [15]. Still, had we performed the

sensitivity analysis against one of these three quantities separately, we would550

have extracted information that describes how this particular quantity depends

on the parameters under discussion. In particular, Figure 11 exhibits the depen-
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Figure 11: Sensitivity analysis for particle diffusion coefficient against maximum

invasion depth of the epithelial-like cancer cells. For the cell particle diffusion coefficient

psens2 = σ, the maximum invasion depth of the epithelial-like cancer cells was computed for 20

simulations of the experiment. In the plot, the results obtained from the reference parameter

set Pref are shown in green; the results from parameter sets with the parameter values 0.25pref2

and 4pref2 are shown in red and blue, respectively. The means were computed and represented

by a horizontal dashed line in the respective colour. For result interpretation, see text.

dence of the maximum invasion depth of the epithelial-like cancer cells on the

cell particle diffusion coefficient σ. After performing 20 simulation experiments

for each parameter set, it can be clearly be seen that increasing σ from the555

reference value σ = pref2 (green line) to σ = 4pref2 (blue line) causes the average

maximum invasion depth to increase only slightly. On the contrary, when σ

decreases from the reference value σ = pref2 (green line) to σ = 0.25pref2 (red line)

the average maximum invasion depth decreases significantly. As a result, the

average maximal invasion depth is closer to the median value 5.4700× 10−2 µm560

measured experimentally by [15], and hence reducing σ = pref2 might lead to

a better fit to the experimental data. Yet, comparing with the results from

the sensitivity analysis that accounted for the relative RMS error rather than

solely for the maximum invasion depth, which is shown in Figure 10b, we find

that decreasing the particle diffusion coefficient does not benefit significantly in565

decreasing the relative RMS error.
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(a) σ = pref2 , νE = pref4

(b) σ = 0.33 pref2 (c) σ = 3 pref2

(d) νE = 0.5 pref4 (e) νE = 2 pref4

Figure 12: The impact of the cell particle diffusion σ and the EMT rate νE . (a):

Simulation using the reference parameter set, cf. Table 1, and in particular σ = pref2 and νE =

pref4 . (b) and (c): We varied σ from the reference value to 0.33 pref2 and 3 pref2 , respectively,

while maintaining the rest of the parameters as in Table 1. These simulations exhibit that the

invasion increases with σ, primarily through increased numbers of invasion “islands” away

from the main body of the tumour. (d) and (e): We varied νE from the reference value to

0.5 pref4 and 2 pref4 , respectively, while retaining the other parameters as in Table 1. These

simulations show increased invasion as νE increases. However, as opposed to (b) and (c),

this stems primarily from the increase of the volume of the tumour’s main body.
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6. Perspectives

We have proposed a three-dimensional model based on the two-dimensional

model introduced in [14], that accounts for the phenotypic variation of can-

cer cells by distinguishing between an epithelial-like and a mesenchymal-like570

phenotype. The model addresses dynamic mutations between these two cell

phenotypes in the form of EMT and its reverse process MET.

The newly developed model is a three-dimensional, genuinely hybrid atomistic-

continuum combination of macroscopic densities and microscopic atomistic pro-

files. The former represents the epithelial-like part of the tumour, the ECM, and575

the MT1-MMPs, which obey a system of PDEs. The latter represent isolated

mesenchymal-like cancer cells whose time evolution is governed by a system of

SDEs. The coupling between the two cellular phenotypes takes the form of a

phase transition between continuum and discrete quantities.

The model is primarily informed by a number of parameters extracted from the580

relevant biological literature. Still, the five model parameters (10) cannot be

inferred directly from the literature. Instead, they are estimated by a combi-

nation of global and local inverse parameter estimation methods augmented by

an a posteriori local parameter sensitivity analysis. To this end, the model is

tested against an in vitro organotypic invasion assay experiment by [15], where585

the invasion of OSCC cells into uterine leiomyoma tissue was studied.

We find the resulting model predictions to be in good qualitative and quanti-

tative agreement with the experimental findings. This allows us to draw con-

clusions with respect to the impact of several of the model components. In

particular, we found that the ECM degradation rate λw is the most influential590

among these five parameters, followed by the EMT rate νE . We also observed

that increasing either the particle diffusion coefficient σ or the EMT rate νE

leads to an increase of the invasion through increased numbers of invasion “is-

lands” and an increase in the volume of the main tumour body, respectively,

cf. Figure 12.595
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In this paper we focussed on the invasion of OSCC, the most common type of

head and neck squamous cell carcinoma (HNSCC) [38]. In HNSCC, distal or-

gan metastasis occurs comparatively rarely compared to other cancers. Instead,

local progression is a major cause of HNSCC-related mortality [16]. A study

by [16] suggests that the mechanism behind this is the induction of MET and600

inhibition of migration in HNSCC cells—and, amongst others, HSC-3 cells in

particular—through connective tissue growth factors in the microenvironment of

a primary tumour. Correspondingly, an often-observed phenomenon in OSCC,

as well as other types of carcinomas [39, 40, 41], is the occurrence of “islands”

of cancer cells outside of the main body of the tumour [15, 42]. In other types of605

carcinomas, the involvement of MET in dissemination and metastatic colonisa-

tion is of crucial importance [11]. Therefore, to apply the model to other types

of carcinomas, we will account for the metastatic spread from one site of the

body to other sites through multiple domains in a multi-organ model, cf. [5]

and [13]. For each organ with primary and secondary spread, the parameter610

settings can be adjusted according to its microenvironment.

Also, to make the movement of the single mesenchymal-like more biologically re-

alistic, a further extension of this modelling framework is the improved descrip-

tion of the migration of mesenchymal-like cancer cells. A lamellipodium-based

cell-migration model such as the one presented in [59], could replace the ad-hoc615

SDEs that we use this work. The various forms of cell-cell interactions, which

in the current model have been reduced to the mere minimum of competing

for free space/resources, are another component to account for in the model in

the future. Moreover, we aim to incorporate diffusible MDEs such as MMP-2,

rather than relying solely on the action of the membrane-bound MT1-MMP for620

the degradation of the ECM.
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Supplementary material.

An interactive 3D myoma invasion simulation experiment that corresponds to795

Figure 7. This allows for a detailed investigation of the simulation results. A spe-

cialised viewer, such as the InstantReality player (https://www.instantreality.org/),

should be used.

Appendix A. Phase transition operators between densities and par-

ticles800

Particle-to-density transition operator for MET. Let
{
(xM

p ,mM
p ), p ∈ P

}
be a

collection of particles that represent mesenchymal-like cancer cells. Using (6)

and (7), we define the particle-to-density operator F as

{
(xM

p ,m
M
p ), p ∈ P

} F−→ c(x, t). (A.1)

To define the function c(x, t), we go through all the particles that represent

mesenchymal-like cancer cells and consider their corresponding density formu-805

lation according to (5). The support Kp of every particle overlaps with several

of the partition cells Mi, i ∈ I. We assign the corresponding portion of the

particle mass to every partition cell Mi:

mM
p

∣∣
Mi

=
mM

p

K

∣∣Kp ∩Mi

∣∣. (A.2)
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In a similar fashion, we account for the contribution of all particles p ∈ P to a

partition cell Mi:810

ci(t) =
∑

p∈P

1

K
mM

p

∣∣
Mi

(A.2)
=

∑

p∈P

mM
p (t)

K2

∣∣Kp ∩Mi

∣∣, for i ∈ I . (A.3)

In view of equations (5) and (A.3), we deduce the density function c(x, t) over

the full domain Ω to be

c(x, t) =
∑

i∈I

ci(t)XMi(x), x ∈ Ω. (A.4)

For simplicity, we assume that the mesenchymal-like cancer cell particles
{
(xM

p ,mM
p ), p ∈ P

}

undergo MET to become epithelial-like cancer cells (below abbreviated as ECC )

randomly through the process815

{
(xM

p ,m
M
p ), p ∈ P

} MET−−−→
{
(xE

p,m
E
p), p ∈ PMET

}
︸ ︷︷ ︸
Newly created cell-particles

. (A.5)

The resulting epithelial-like cancer cell particles are instantaneously transformed

to density via the particle-to-density operator F given in equation (A.1):

{
(xE

p,m
E
p), p ∈ PMET

} F−→ cEMET.

Consequently, the MET can be expressed in operator form as

RMET
(
cE ,

{
(xM

p ,m
M
p ), p ∈ P

})
= (cE + cEMET, {(xM

p ,m
M
p ), p ∈ P̃ new}), (A.6)

where P̃ new is a re-enumeration of the set difference P \ PMET.

Density-to-particle transition operator for EMT. Given a density function c =

c(x, t), we define the density-to-particle operator B for a general particle as

c(x, t)
B−→ {(xp(t),mp(t)), p ∈ P} . (A.7)

We assign one particle with mass820

mi(t) =

∫

Mi

c(x, t)dx (A.8)

and position

xi(t) = the (bary-)centre of Mi (A.9)
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to every cube partition cell Mi, i ∈ I.

The density-to-particle transition is used in this paper to model the EMT pro-

cess. As in the case of MET in Appendix A, EMT is—at this stage—represented

using a simplified approach where a randomly chosen part of the epithelial-

like cancer cells (in density formulation) cEEMT undergoes EMT to give rise to

mesenchymal-like cancer cells. For this, the full domain is discretised into parti-

tion cuboids Mi, i ∈ I. EMT takes place with some probability in each cuboid

that contains some material. The larger the amount of material in a cuboid, the

higher the probability that one cell undergoes EMT. We perform this process in

steps. First, the randomly chosen part of the epithelial-like cancer cell density

cEEMT transitions to mesenchymal-like cancer cell density:

cEEMT
EMT−−−→ cMEMT.

This mesenchymal-like cancer cell density is immediately transformed to mesenchymal-

like cancer cell-particles via the density-to-particle operator B given in equa-

tion (A.7):825

cMEMT
B−→

{
(xM

p ,m
M
p ), p ∈ PEMT

}
. (A.10)

Here xM
p and mM

p are given by equations (A.8) and (A.9), respectively, and

PEMT is the set of indices corresponding to the particles that perform EMT.

Subsequently, the family of existing mesenchymal-like cancer cell particles—

below abbreviated as MCC—is updated with these newly created particles. It

is hence given by the disjoint union830

{
(xM

p ,m
M
p ), p ∈ P

}
︸ ︷︷ ︸
existing cell particles

*
{
(xM

p ,m
M
p ), p ∈ PEMT

}
︸ ︷︷ ︸
newly created cell particles

=
{
(xM

p ,m
M
p ), p ∈ P new

}
,

(A.11)

where P new is a re-enumeration of the multiset P * PEMT.

Overall, the EMT operator consequently reads as

REMT(cE ,
{
(xM

p ,m
M
p ), p ∈ P

}
) = (cE − cEEMT,

{
(xM

p ,m
M
p ), p ∈ P new

}
). (A.12)
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