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Cancer is a complex, multiscale process involving interactions at intracellular, intercel-
lular and tissue scales that are in turn susceptible to microenvironmental changes. Each

individual cancer cell within a cancer cell mass is unique, with its own internal cellular
pathways and biochemical interactions. These interactions contribute to the functional

changes at the cellular and tissue scale, creating a heterogenous cancer cell popula-

tion. Anticancer drugs are effective in controlling cancer growth by inflicting damage to
various target molecules and thereby triggering multiple cellular and intracellular path-

ways, leading to cell death or cell-cycle arrest. One of the major impediments in the

chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms,
including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this

article, we discuss two hybrid multiscale modelling approaches, incorporating multiple

interactions involved in the sub-cellular, cellular and microenvironmental levels to study
the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of

cancer cells.
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1. Introduction

Even with many important clinical and technological advancements in detecting

and treating cancer, cure and control of many forms of cancer remain the greatest

challenge to clinicians and scientists. In most cases, chemotherapy is used alone or in

combination with other anticancer treatments such as radiotherapy and surgery to

control a growing tumour. However, drug resistance driven by multiple mechanisms,

including multi-drug and cell-cycle mediated resistances to chemotherapy drugs con-

tinues to be a major barrier for the treatment failure in human malignancies1,2.

Several recent experimental studies have indicated the fundamental role of intratu-

moural heterogeneity as a driving source for the resistance to multiple chemother-
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apeutic drugs 3–4. One of the major reasons for this intratumoural heterogeneity

is the intracellular perturbations in biochemical kinetics and heterogeneity in the

tumour microenvironment that seriously impair the drug efficacy1. Hence, under-

standing various mechanisms involved in the development of drug resistance and,

devising drugs and protocols to target these mechanisms are significant steps in

overcoming drug resistance, where clinically driven computational models can play

an important role5–6.

The two main factors that contribute to the intra-tumoural heterogeneity are in-

ternal cell-cycle dynamics and the surrounding oxygen concentration. The cell-cycle

mechanism through which the cells duplicate consists of several transition phases of

varying lengths and check points and is mainly divided into four phases. As most of

the chemotherapeutic drugs that are administered to treat human malignancies are

cell-cycle phase specific, they spare some of the cells that are in the non-targeted

phase, causing a cell-cycle mediated drug resistance2. Cell-cycle dynamics are also

further influenced by the external microenvironmental conditions, especially the

availability of oxygen. Experimental evidence shows that hypoxia (lack of oxygen)

can upregulate the expressions of some of the cyclin dependent kinase inhibitors such

as p21 and p27, resulting in a prolonged cell-cycle time or even cell-cycle arrest7,8.

This further contributes to the cell-cycle heterogeneity and cell-cycle phase specific

drug resistance. Here, we discuss a multiscale mathematical model, incorporating

some of these cellular heterogeneities to understand and study their role in inducing

chemotherapeutic drug resistance.

The multiscale complexity of cancer progression warrants a multiscale mod-

elling approach to produce truly clinically useful and predictive mathematical mod-

els. Previously, Powathil et al.5 developed a multiscale mathematical model of

chemotherapy treatment, incorporating cell-cycle mediated intracellular heterogene-

ity and external oxygen heterogeneity to study the effects of cell-cycle, phase-specific

chemotherapy and its combination with radiation therapy9. It has been shown that

an appropriate combination of cell-cycle specific chemotherapeutic drugs with radi-

ation delivery could effectively be used to control tumour progression. There have

been several mathematical and computational modelling approaches developed to

study the occurrence of drug resistance 10–11. These approaches help to understand

and to some extent analytically quantify various biological processes. Furthermore,

it can also be used as a tool to analyse and design drug development experiments

and clinical trials. In this article, we discuss the multiscale mathematical model

developed by Powathil et al.5 and two different computational approaches to im-

plement the developed model. Further, we use it to study the effects of cell-cycle

phase-specific chemotherapeutic drugs on a growing tumour population with intra-

tumoral heterogeneities6.
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2. Modelling Cancer Growth: Multiple Scales Involved

Cancer growth is a complicated multiscale disease involving many interrelated pro-

cesses that occur across a wide range of spatial and temporal scales, from the intra-

cellular level to the tissue level. Consequently, a multiscale modelling approach is

needed to capture the key processes that are occurring at these different spatial and

temporal scales and couple them in an appropriate manner. Here we discuss a hybrid

multiscale model developed by Powathil et al.5 that analyses the spatio-temporal

dynamics at the level of individual cells, linking individual cell behaviour with the

macroscopic behaviour of cell/tissue organisation and the microenvironment. The

model captures the intracellular molecular dynamics of the cell-cycle pathway and

the changes in oxygen dynamics within the tumour microenvironment. It is then

used to study the the impact of oxygen heterogeneity on the spatio-temporal pat-

terning of the cell distribution and their cell-cycle status5,9.

The growth and progression of a solid tumour mass depends critically on the re-

sponses of the individual cells that constitute the entire tumour mass. The evolution

of each individual cancer cell and its decisions to grow, divide, remain inactive or die

are usually influenced by the local micro-environmental conditions at the location

occupied by any particular cell within the tumour and intracellular interactions, in-

cluding the intracellular cell-cycle dynamics. Moreover, these cellular responses are

actively influenced by various extracellular signals from neighbouring cells as well

as its dynamically changing microenvironment. As discussed in Powathil et al.5, the

growth and proliferation of each cancer cell is determined by its own internal cell-

cycle mechanism and is incorporated using a set of ordinary differential equations.

This internal cell-cycle dynamics are further influenced by the changing surround-

ing oxygen concentration which is modelled through the activation of HIF pathway

(hypoxia inducible factor pathway) linking the microenvironment to intracellular

cell-cycle pathway.

The HIF pathway in usually implicated in several hypoxia related events within

a growing tumour such as the production of metastatic phenotypes with increased

mutation rates, increased secretion of angiogenic factors, less apoptosis and an up-

regulation of various pathways involved in the metastatic cascade12. The hypoxia

inducible transcription factor -1 is composed of two subunits, HIF-1 α and HIF-1 β,

both of which are required for its transcription activation function. Under normoxic

conditions, the rapidly produced HIF-1α is degraded immediately by the actions of

proline hydroxylase and pVHL. However, under hypoxic conditions HIF-1 α escapes

degradation and its level increases rapidly. This further activates the expression of

various genes, triggering various intra- and intercellular pathways including the

expressions of cyclin dependent kinase inhibitors p21 and p27 pathways, affecting

the cell-cycle dynamics7,13. The dynamical changes in the tumour microenvironment

due to the variations in oxygen concentration are modelled using partial differential

equations. The developed model can be then used to analyse cellular heterogeneities

due to various internal and external factors and its role in a cell’s response to
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chemotherapy treatment.

2.1. Intracellular Heterogeneities: Modelling the Cell-Cycle

Dynamics

Most of the complex cellular processes that are involved in cancer progression such

as proliferation, cell division and DNA replication are regulated by the cell-cycle.

The cell-cycle is controlled by a complex hierarchy of metabolic and genetic net-

works with several transition phases of varying lengths and check points14. The

cell-cycle can be divided into four main phases: S-phase where DNA synthesis oc-

curs, G2-phase during which proteins required for mitosis are produced, M-phase

where mitosis and separation occur and G1-phase where proteins necessary for S-

phase progression are accumulated15. Additionally, cells may sometimes exit from

the cell-cycle and enter a phase of quiescence or relative inactivity called the G0-

phase or resting phase14. The cell-cycle dynamics within a mammalian cell are

regulated mainly by a family of cyclin dependent kinases (Cdk), whose activity is

primarily dependent on association with a regulatory protein called cyclin16. Ad-

ditionally, the progression of cell-cycle dynamics is affected by several intracellular

and extracellular factors such as Cdk inhibitors that can act as negative regulators

of the cell-cycle and tumour microenvironment15. A few specific examples of Cdk

inhibitors include the proteins p16, p15, p21 and p27. Some of the extrinsic fac-

tors that can influence the cell-cycle mechanism include nutrient supply, cell size,

temperature and cellular oxygen concentration14.

Here we use a cell-based modelling approach to study the growth and progression

of a cancer cell mass. The evolution of each cancer cell is based on the decisions made

by the cell-cycle mechanism within the cell and we further assume that this con-

tributes to the intracellular heterogeneities. To model the cell-cycle dynamics within

each cell, we use an adapted version of a very basic model5 originally developed by

Tyson and Novak17,18 that includes only the interactions which are considered to be

essential for cell-cycle regulation and control. The models by Tyson and Novak17,18

describe the cell-cycle as a hysteresis loop with two self-maintaining stages while

the transitions between these two stages are determined by the changing cell mass

during the division. They used kinetic relations between various chemical processes

to study the transitions between two main steady states, G1 and S-G2-M of the

cell-cycle, which is (in their model) controlled by changes in cell mass. Although,

Tyson and Novak have subsequently introduced a much more sophisticated model

for the mammalian cell-cycle19, for simplicity we have opted to use the six variable

model to simulate the cell-cycle. Moreover in the adapted model, we have used the

equivalent mammalian proteins stated in Tyson and Novak’s paper, namely the

Cdk-cyclin B complex [CycB], the APC-Cdh1 complex [Cdh1], the active form of

the p55cdc-APC complex [p55cdcA], the total p55cdc-APC complex [p55cdcT], the

active form of Plk1 protein [Plk1] and the mass of the cell [mass]5,9. Using the

kinetic relations, the evolution of the concentrations of these variables are mod-
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elled using the following system of six ODEs (further details concerning the kinetic

interactions can be found in Tyson and Novak’s papers 17,18).

d[CycB]

dt
= k1 − (k

′

2 + k
′′

2 [Cdh1] + [p27/p21][HIF])[CycB], (1)

d[Cdh1]

dt
=

(k
′

3 + k
′′

3 [p55cdcA])(1− [Cdh1])

J3 + 1− [Cdh1]
− k4[mass][CycB][Cdh1]

J4 + [Cdh1]
, (2)

d [p55cdcT]

dt
= k

′

5 + k
′′

5

([CycB][mass])n

Jn
5 + ([CycB][mass])n

− k6 [p55cdcT], (3)

d [p55cdcA]

dt
=
k7[Plk1]( [p55cdcT]− [p55cdcA])

J7 + [p55cdcT]− [p55cdcA]
−
k8[Mad] [p55cdcA]

J8 + [p55cdcA]

− k6 [p55cdcA], (4)

d[Plk1]

dt
= k9[mass][CycB](1-[Plk1])− k10[Plk1], (5)

d[mass]

dt
= µ[mass]

(
1− [mass]

m∗

)
, (6)

where ki are the rate constants and the values are chosen in proportion to those

in Tyson and Novak so that the time scale is relevant to a mammalian cell-cycle5.

Other parameters used in the system are Ji, [Mad] and [p27/p21]5. The effects of

changes in oxygen dynamics are included into the system through the activation and

inactivation of HIF pathway which further results in changes in cell-cycle length.

Here, we have assumed that HIF-1 α concentration at a cellular position, which

is normally inactive ([HIF] = 0), is activated ([HIF] = 1) if the oxygen concentra-

tion at that position falls below 10%. The cell-cycle inhibitory effect of p21 or p27

genes expressed through the activation of HIF-1 α is incorporated into the equation

governing our generic Cyclin-CDK dynamics, using an additional decay term pro-

portional to the concentration of p27/p21 (which is considered here as constant)5,20.

A cell is assumed to divide when the concentration of Cdk-cyclin B complex [CycB]

crosses a specific threshold value [CycB]th which is assumed to be 0.1, from above,

and then the mass, [mass] is halved. To introduce a random growth rate for indi-

vidual cells which in turn introduces cell-cycle heterogeneity in the population, we

consider a varying growth rate µ. The rest of the parameter values of the cell-cycle

model can be found in Powathil et al.5.

Figure 1 shows the changes in various protein concentrations that have been

included in the current cell-cycle model for one single automaton cell. Every cell in

this multiscale model has a similar cell-cycle dynamics built-in which further control

the division and cell-cycle phases of the respective cells. In this representative figure

(adapted from Powathil et al.5), a cell undergoes division constantly as long as there

is enough space to divide and the surrounding microenvironment is favourable for

its division. However, as soon as all its neighbouring spaces are occupied, the cell

moves to a resting phase where the concentrations are maintained at a constant

level.
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Fig. 1. Plot of the concentration profiles of the various intracellular proteins and the cell-mass

over a period of 200 hours for one automaton cell in the model. This is obtained by solving the
system of equations, (1) – (6), with the relevant parameter values. Adapted from Powathil et al.5.

Fig. 2. Plot showing the concentration profile of oxygen supplied from the vasculature in the

local tissue. The red coloured spheres represent the blood-vessel cross-sections and the colour map

shows the percentages of oxygen concentration. Adapted from Powathil et al.9.

2.2. Microenvironment Heterogeneities: Modelling the Oxygen

Dynamics

The growth of individual tumour cells as well as the entire tumour mass is

externally influenced by its surrounding microenvironment. In particular the local

availability of nutrients such as oxygen. The effects of a dynamically changing mi-

croenvironment introduced by incorporating oxygen dynamics, is modelled using a

partial differential equation5,9. Here, oxygen is assumed to be supplied from a ran-

dom distribution of blood vessels (vascular cross sections in 2D) with a density of

φd = Nv/N
2, where Nv is the number of vessel cross sections in the 2-dimensional

domain (of area N2)5. This is a reasonable assumption if the blood vessels are as-
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sumed to be perpendicular to the tissue cross section of interest and there are no

branching points through the plane of interest21,22. The temporal dynamics of these

vessels are ignored at present, assuming the growth of tumour cells is much faster

than that of the vessels within the time frame of interest. Denoting by K(x, t) the

oxygen concentration at position x at time t, then its rate of change can be expressed

as,

∂K(x, t)

∂t
= ∇.(DK(x)∇K(x, t)) + r(x)m(x)− φK(x, t)cell(x, t) (7)

where DK(x) is the diffusion coefficient and φ is the rate of oxygen consumption by

a cell at position x at time t (cell(x, t) = 1 if position x is occupied by a cancer cell

at time t and zero otherwise). Here, m(x) denotes the vessel cross section at position

x (m(x) = 1 for the presence of blood vessel at position x, and zero otherwise) and

r(x) describes rate of oxygen supply5. This equation is solved using no-flux boundary

conditions and an initial condition23. Figure 2 shows a representative profile of the

spatial distribution of oxygen concentration after solving equation (7) with relevant

parameters5. Furthermore, It is observed that lack of an adequate supply of oxygen

(hypoxia) can upregulate some of the cell-cycle inhibitory proteins such as p27 and

p21 which could interfere with the cell-cycle, eventually taking the cell either to a

resting phase or inducing a cell-cycle arrest24,7. These effects are introduced into

the cell-cycle dynamics through the equation governing the changes of Cdk-cyclin

B complex (cf. Equation 1).

3. Implementation of the Multiscale Model

The tissue-scale dynamics of the oxygen concentration outlined above can be linked

to the sub-cellular and cellular changes through two different modelling approaches,

namely, (i) a hybrid multiscale cellular automaton framework5,9 and (ii) a multi-

scale cellular Potts modelling approach using the CompuCell3D framework6. In

both these modelling approaches, the computational domain contains three differ-

ent components that are required to simulate the multiscale model. These are: (1)

the cancer cells whose spatio-temporal evolution is controlled by internal cell-cycle

dynamics and the external microenvironment; (2) the oxygen concentration distri-

bution and (3) cross-sections of blood vessels from where the oxygen and chemother-

apeutic drugs are supplied to the domain of interest. A detailed explanation of these

modelling approaches are outlined below.

3.1. The Hybrid Multiscale Cellular Automaton Framework

Cellular automaton (CA) modelling has been used very extensively to model various

aspects of tumour development and progression25,21,26,27. Some examples for such

studies include multiscale tumour growth models by Alarcon et al.28, Ribba et al.29

and Gerlee and Anderson30. A brief review that discusses different CA modelling
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(a) Time =100 hr          (b) Time = 300 hr        (c) Time = 600 hr

Fig. 3. Plots of the spatial distribution of the cells in different stages of the cell cycle which are
G1 (blue), S-G2-M (green), resting (magenta), hypoxic cells in G1 (rose), hypoxic cells in S-G2-M

(yellow) and hypoxic cells in resting (silver) at times 100, 300 and 600.

approaches to study various stages of cancer progression can be found in a review

article by Moreira and Deutsch31. Recently, Powathil et al.5 developed a hybrid

multiscale cellular automaton approach to model cancer progression and used the

model to study the effects of cell-cycle dependent chemotherapeutic drugs alone and

in combination with radiation therapy5,9.

The hybrid CA model is simulated on a spatial grid of size 100×100 grid points

and each automaton element whether it is empty or occupied, has a physical size

of l × l, where l = 20 µm, simulating a cancer tissue of area 2 × 2 mm2. The

CA begins as a new grid of empty points with a single initial cell (a blue cell)

at the centre of the grid in the G1-phase of the cell-cycle. This initial cell divides

repeatedly following its internal cell-cycle dynamics and produces a cluster of cells on

a square lattice (no-flux boundary conditions are imposed). The entire multiscale

model is simulated over a certain period of time and a vector containing all cell

positions and intracellular protein levels for each cell are updated accordingly. The

oxygen dynamics are simulated using a finite difference scheme at every simulation

time step and the corresponding oxygen concentration levels are updated. The cell-

cycle phases are determined using the concentration levels of [CycB]. If [CycB]

is greater than a specific threshold (i.e. 0.1) the cell is considered to be in the

S-G2-M phase (green cell) and if it is lower than this value, the cell is in the G1-

phase. If the cyclinB-cdk complex concentration [CycB] crosses this threshold from

above, the cell undergoes cell division, its mass [mass] is halved. Alternatively, a

cell may enter into a resting phase if the dividing cell’s neighbourhood has no

space for the new daughter cell. Alternatively, if division takes place, the new cell is

placed into the G1-phase of the cell-cycle and is assigned a value for its proliferation

rate µ randomly from the range of values of µ. If there is more than one empty

space with the same oxygen concentration level, a position is chosen randomly. The

position of the new daughter cells is determined by alternating Moore and Von
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(a) Time =150 hr          (b) Time = 350 hr        (c) Time = 650 hr

Fig. 4. Plots of the spatial evolution of tumour cells in different phases of the cell-cycle at times

= 150 hr, 350 hr and 650 hr. The colour legend shows the types of the tumour cells; 1- medium,

2- G2 phase, 3- G1 phase, 4- vessel cross sections, 5- hypoxic G2 phase, 6- hypoxic G1 phase and
7- resting cells. Adapted from Powathil et al.6.

Neumann neighbourhoods to avoid generating cell distribution patterns matching

the specific neighbourhood5,9 (this creates symmetric “circular” masses of cancer

cells as opposed to square or diamond shapes). As the cancer cells proliferate, the

oxygen demand increases making an imbalance between supply and demand which

will eventually create a state where the cells are deprived of oxygen. If the oxygen

concentration falls below 10% the cells are assumed to be hypoxic and the hypoxic

cells that are in G1-phase are represented by rose colour coded cells while hypoxic

S-G2-M cells and hypoxic resting cells are denoted by the colours yellow and silver,

respectively. Figure 3 shows the distribution of cells in various cell-cycle phases at

three different time points. The simulation time step for the both the CA model and

the oxygen dynamics is taken as T=0.001 hr as it gives a oxygen diffusion constant

of 2 × 10−5 cm2/s with appropriate diffusion length scale L of 100 µm. Further

details of the model can be found in Powathil et al.5.

3.2. The Multiscale Cellular Potts Model: CompuCell3D

Framework

An alternative approach to modelling such complex multiscale problems is by using

a multiscale cellular Potts model or the Glazier-Graner-Hogeweg (GGH) approach.

The GGH model contains description of objects, such as cells and fields, interactions

with the cellular properties that evolve with respect to time and space and are mod-

elled with the help of various initial conditions32. Each cell is a collection of lattice

pixels having the same index marker and is represented as spatially extended do-

mains on a fixed lattice. We used the CompuCell3D framework developed by Glazier

et al. (see http://www.compucell3d.org for details) to simulate the previously de-

scribed multiscale model6. The multiscale model is simulated using a 2-dimensional

lattice of size 300 × 300 pixels in the x− and y−directions with an initial configu-

ration of single cells surrounded by a number of blood vessel cross sections. Similar
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to the previous approach, the division of tumour cells is driven by the cell-cycle

dynamics modelled using the kinetic equations (1)-(5). The set of ODEs governing

the cell-cycle dynamics is incorporated into the Compucell3D framework in each

Monte Carlo time step (mcs) using Bionetsolver. Bionetsolver is a C++ library that

permits easy definition of sophisticated models coupling reaction-kinetic equations

described in SBML with the defined cells for execution in CompuCell3D 32. Bionet-

solver makes use of the SBML ODE Solver Library to implement reaction-kinetic

network dynamics which can regulate the cell-cycle dynamics for each tumour cell

within the domain. Cellular growth is incorporated into the model by incrementing

the cell target volume in every mcs during growth phases at a constant rate of 0.5

times the current cell volume. Division is assumed to occur when the concentration

of [CycB] crosses the threshold value from above. However, since here we are using

a growing volume, the cell-cycle dynamics are simulated using the equations (1)-(5),

using [volume] instead of [mass]. The parameter values of the cell-cycle model are

scaled in such a way that each mcs step corresponds to 1 hour and hence a cell has

an average cell-cycle length of 25-35 hours. The evolution of oxygen concentration

is incorporated into the CompuCell3D as a diffusive chemical field that follows the

respective PDE described previously. The parameters are taken from Powathil et

al.5 and for consistency, the diffusion equation is simulated 1000 times in every 1

mcs to achieve a similar time-scale of 0.001hr 6. Figure 4 shows the spatial evolu-

tion of tumour cells. The colour of the tumour cells indicate their cell-cycle phase

position and the microenvironment status.

4. Modelling the Effects of Chemotherapy

Chemotherapy is one of the most common therapeutic options for cancer treatment,

either alone or in combination with other therapies (multimodality). Chemother-

apeutic drugs act on rapidly proliferating cells targeting the different cell-cycle

phases and check points. In cancer, Cdks, the proteins responsible for the acti-

vation of the cell-cycle, are over-expressed while cell-cycle inhibitory proteins are

under-expressed which results in a malfunctioning in the regulation of the cell-cycle,

and eventually leads to a promotion of uncontrolled growth. The rationale behind

cell-cycle, phase-specific chemotherapy is to target those proteins that are over-

expressed during various stages of cancer progression, inducing an inhibitory effect

and thus controlling cell growth. One of the major issues that affects the delivery

and effectiveness of chemotherapeutic drugs is the occurrence of cell-cycle mediated

drug resistance2. This may be due to the presence of functionally heterogeneous cells

and cell subpopulations, and can be addressed to some extent by using combinations

of chemotherapy drugs that target different phases of the cell-cycle kinetics2.

We are interested in studying the effects of cell-cycle based chemotherapeutic

drugs on cancer cells and cancer cell subpopulations with varying drug sensitivi-

ties. We model the spatio-temporal evolution of cell-cycle specific chemotherapeu-

tic drugs using a similar partial differential equation as that governing the oxygen
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Fig. 5. Plots showing the spatial evolution of tumour cells when cell-cycle phase specific

chemotherapeutic drugs are given. (i) G2 drug followed by G2 drug and (ii) G1 drug followed
by G1 drug at times (a) 510 hr, (b) 550 hr, (c) 560 hr and (d) 750 hr. Adapted from Powathil et

al.6.

dynamics. Hence, denoting by Ci(x, t) the concentration of chemotherapeutic drug

type i, its spatio-temporal evolution is given by the equation:

∂Ci(x, t)

∂t
= ∇.(Dci(x)∇Ci(x, t)) + rci(x)m(x)− φciCi(x, t)cell(x, t)− ηciCi(x, t)

(8)

where Dci(x) is the diffusion coefficient of the drug, φci is the uptake rate by a cell

(assumed to be zero), rci is the drug supply rate by the pre-existing vascular network

and ηci is the drug decay rate5,6. As similar to that of equation governing the

oxygen concentration, this PDE is incorporated into the CompuCell3D as diffusive

chemical field and simulated using the parameters values found in Powathil et al.5.

To study the effects of multiple phase-specific chemotherapy, we consider two types

of phase-specific chemotherapeutic drugs that are either G1 specific or G2-S-M

specific, delivered at a same rate. Furthermore, chemotherapeutic drugs are assumed

to be effective in killing a cell, if its average concentration at the location of that

specific cell is above a fixed threshold value and below which the drug has no effect

on any cells. In the following subsections, we study the effects of cell-cycle based

chemotherapeutic drugs on a growing tumour using the CompuCell3D framework

hybrid multiscale computational model.

4.1. Homogenous Population Model: The Effects of Chemotherapy

In this section, we study we effects of cell-cycle based chemotherapy on a popula-

tion of homogeneously growing tumour cells with similar cell-cycle dynamics (i.e.
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Fig. 6. Plots comparing the total number of cells when the tumour cells are treated with two

doses of cell-cycle phase specific drugs at Time = 500 hr and Time = 550 hr. Adapted from
Powathil et al.6.

the same cell-cycle time under favourable conditions) but with intracellular and mi-

croenvironmental heterogeneities. Figure 4 shows the spatio-temporal evolution of a

solid tumour mass with a homogenous cell population in the absence of chemother-

apy. As illustrated in the figure, the colours of tumour cells indicate the cell-cycle

position and oxygenation status of each individual cell.The spatial distribution of

the tumour cells shows the development of the proliferating rim around the bound-

ary of the growing tumour as the internal cells become hypoxic due to the increased

consumption of oxygen supplied from the blood vessels.

To study the effects of cell-cycle, phase-specific chemotherapeutic drugs on the

growing tumour, two doses of cell-cycle phase-specific drugs that act on cells that

are either in G1-phase or S-G2-M phase are delivered at a same rate at times 500

hours and 550 hours. A representative figure showing the spatio-temporal evolution

of cancer cells when the tumour mass is treated with two doses of G1 drugs and G2

drugs is given Figure 5. Figure 6 shows and compares the total number of tumour

cells during the therapy. As previously shown by Powathil et al.5, the results indi-

cate that the choice and sequencing of different types of chemotherapeutic drugs can

significantly affect the spatial distribution and the cytotoxic cell-kill of cancer cells.

Furthermore, it has been shown that various factors such as the spatial distribution

of cancer cells, the correct sequencing of chemotherapeutic drugs, and intracellu-

lar and microenvironment heterogeneities play important roles in determining the

precise cytotoxic effectiveness of cell-cycle phase-specific chemotherapeutic drugs.

The results of multiple combinations of cell-cycle specific chemotherapeutic
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Fig. 7. Plots showing snapshots of the simulation results of the model with two subpopulations of
cancer cells at time points (a) 350 hr, (b) 450 hr, (c) 550 hr and (d) 650 hr. The colour legend given

in addition to that of Figure 4 (subpopulation 1) shows the types of the second subpopulation of

tumour cells; 1 - G2 phase, 2 - G1 phase, 3 - hypoxic and 4 - resting cells. Adapted from Powathil
et al.6.

drugs (Figure 6) show that a combination of G1 specific drug followed by another

G1 specific drug (Figure 5(ii)) and G2 specific drugs and G1 specific drugs give

better therapeutic outcomes than other two combinations. This is due to the pres-

ence of a higher fraction of proliferating cells in G1-phase at the time of the drug

doses and increased proliferation after the initial dose. However, please note that

these drug combinations need not always give the best outcome, especially if there

were a higher proportion of resting cells within a growing tumour mass5. Hence,

it is important to know the underlying spatial distribution of a growing tumour

mass and the internal cellular heterogeneities present to achieve the best possible

outcome.

4.2. Heterogeneous Population Model: The Effects of

Chemotherapy

One of the common reasons for chemotherapeutic failure in cancer patients is the

emergence of drug resistance in subpopulations within the growing tumour2. There

are several reasons that contribute to this chemotherapeutic drug resistance, in-

cluding multi-drug resistance to the chemotherapeutic drugs and the emergence of

heterogenous subpopulations with varying responsiveness to the given drug33,34.

Recently, it has been shown that the tumour heterogeneity caused by the cell-

cycle dynamics and the variations in the cell-cycle duration can play a vital role

in the chemotherapeutic sensitivity, as most of the chemotherapeutic drugs act on

actively cycling cells. Several studies involving heterogenous tumour masses that

contain a slowly-cycling subpopulation of tumour cells indicated that the use of

traditional chemotherapeutic drugs could ultimately lead to an emerging subpopu-

lation of drug resistant, slowly-cycling tumour cells that has the potential to repop-

ulate the tumour mass33,34. Moreover, the results from recent computational studies

using multiscale mathematical models have also confirmed the role of slowly-cycling

tumour subpopulations in developing chemotherapeutic resistance and showed that
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Fig. 8. Plots showing (a) the number of cells in various phases of the cell-cycle for a heterogenous

tumour with a second subpopulation of cells of slow-cycling tumour cells, (b) average percentage
of cells in G1/G0 and S/G2/M phases for subpopulation 1 and (c) average percentage of cells in

G1/G0 and S/G2/M phases for subpopulation 2. The lines represent the corresponding temporal

average number of cells either in G1 phase or S-G2-M phases

.

conventional chemotherapy may sometimes result in the emergence of dominant,

slowly-cycling subpopulations of tumour cells6.

Recently, Powathil et al.6 studied the chemotherapeutic effects of anti-cancer

drugs on a tumour mass that consists of two subpopulations: one with an active

cell-cycle with a cell-cycle length of 25-30 hours, and a second subpopulation with

slowly-cycling tumour cells. Figure 7 shows the spatio-temporal evolution of the

heterogenous tumour mass with two subpopulations of tumour cells. The slowly-

cycling tumour subpopulation is introduced into the previous homogenous model

(Figures 4 and 7) through random mutations that are assumed to occur after 100

mcs (hr). The quantitative results of the heterogenous tumour growth model is given

in Figure 8. Figure 8(a) compares the total number of tumour cells and the number

of cells in various phases of the cell-cycle for both subpopulations 1 and 2, and

Figures 8(b) and 8(c) give the percentage of proliferating cells in subpopulations 1

and 2. The results shown in Figures 8(b) and 8(c) indicated that the slow-cycling

subpopulation has more cells in G2 phase when compared to subpopulation 1, as

observed in previous experimental studies33,34.

The heterogenous two population tumour growth model described above can also

be used to study the effects of cell-cycle phase-specific chemotherapy6. Two doses

of cell-cycle phase-specific chemotherapeutic drugs are given at times 500 hours and

550 hours, in a similar manner to that of the homogenous case. A representative

figure for the spatial evolution of cancer cells during and after the chemotherapeutic
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Fig. 9. Plots showing the spatial evolution of tumour cells within a two population model when
cell-cycle phase specific chemotherapeutic drugs are given. (i) G2 drug followed by G2 drug and

(ii) G1 drug followed by G1 drug at times (a) 510 hr, (b) 550 hr, (c) 560 hr and (d) 650 hr. Adapted
from Powathil et al.6.
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Fig. 10. Plots showing percentage of proliferating cells in subpopulations 1 and 2. Adapted from

Powathil et al.6.

treatment with two doses of G1-phase specific drugs and G2-phase specific drugs

is shown in Figure 9. Figure 10 shows the percentage of proliferating cells in sub-

populations 1 and 2 when the tumour mass is treated with each combination of

cell-cycle phase specific chemotherapeutic drugs. A comparison of the total number

of tumour cells and the number of cells in each subpopulations is given in Figure

11 and it shows that combinations of G2 & G1 specific drugs and G1& G1 specific

drugs give a better outcome than other two combinations. Moreover, it can be seen

from Figure 10 that a second dose of G1-phase drug kills a majority of the cancer

cells in subpopulations 1 and 2, enriching the slowly-cycling cells in subpopulation

2. These results by Powathil et al.6 are in good qualitative agreement with the ex-

perimental results of Moore et al.33,34. They have shown that when a heterogenous
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Fig. 11. Plots showing the effects of cell-cycle specific chemotherapeutic drugs on the total num-

ber of tumour cells. (a) Total number of cells in two population model, (b) number of cells in
subpopulation 1 and (c) number of cells in subpopulation 2. Adapted from Powathil et al.6.

tumour mass responds positively to chemotherapeutic treatment, it kills a majority

of the active cells, increasing the percentage of slowly-cycling tumour cells within

the tumour mass (as shown in Figure 10(iv)) and thus increasing the chance for

tumour recurrence. Further extensive analysis and results of the multiscale model

for a heterogenous tumour population can be found in Powathil et al.6.

5. Conclusions

In most cases, chemotherapy is administered as a combination of multiple anti-

cancer drugs that target various processes involved in cancer growth and progres-

sion. Combination therapy is usually used to increase the cytotoxicity and mostly

targets various intracellular biochemical concentrations that are fluctuating during

the cell-cycle, aiming to reduce the drug resistance due to the heterogenous nature

of the tumours, with minimal toxicity. However, the efficacy of these administered

chemotherapeutic drugs is often influenced by the intracellular perturbations of the

cell-cycle dynamics, inducing a cell-cycle-mediated drug resistance. Hence, it is very

important to study and analyse the underlying heterogeneity within a cancer cell

and within a solid tumour mass due to the presence of the microenvironment and the

cell-cycle position so as to design and develop more effective treatment protocols.

In this article, we have presented a multiscale mathematical model incorporating

the effects of intracellular cell-cycle dynamics and the external microenvironment to

study the spatio-temporal dynamics of tumour growth and its response to cell-cycle

based chemotherapy5,6. The developed multiscale mathematical model can be imple-

mented using various computational approaches. Here, the multiscale mathematical

model is implemented using two hybrid individual-based approaches, namely: (i) a
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hybrid cellular automaton approach5,9 and (ii) a hybrid cellular potts approach us-

ing the CompuCell3D framework6. Although each of these modelling approach is

technically different, the results obtained from both multiscale models are similar

and comparable, showing the robustness of the multiscale mathematical modelling

approach. Recently, several experimental and clinical observations14,33,34 have in-

dicated the role of internal and external heterogeneities in inducing chemothera-

peutic drug resistance within a growing tumour, increasing its chances of recur-

rence. We have further used the multiscale computational model (using the Com-

pucell3D framework) to study the effects and efficacy of chemotherapy on a ho-

mogeneously growing tumour with intracellular heterogeneities and a heterogenous

tumour growth model (with a slowly-cycling tumour subpopulation) with intracel-

lular heterogeneities. The results obtained from the multiscale model were in very

good agreement with the previous experimental findings6,33,34 and highlighted the

role of intrinsic cell-cycle-driven drug resistance of slowly-cycling tumour subpopu-

lation in the recurrence of the tumour after therapy. Future work will consider other

factors that may induce drug resistance within a growing tumour mass such as vari-

ations in cell cycle control, anti-apoptotic proteins, multi-drug resistance through

the activation of cellular pumps and increased metabolic activities33,35,4 to study

their role in tumour recurrence and analyse the various optimum delivery protocols

for multiple chemotherapeutic drugs to achieve maximum therapeutic benefit.
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