95 research outputs found
Spoken Code-Switching in Written Form? Manifestation of Code-Switching in Computer Mediated Communication
Contains fulltext :
159840.pdf (publisher's version ) (Open Access)22 p
A water cycle for the Anthropocene
International audienceHumor us for a minute and do an online image search of the water cycle. How many diagrams do you have to scroll through before seeing any sign of humans? What about water pollution or climate changeâtwo of the main drivers of the global water crisis? In a recent analysis of more than 450 water cycle diagrams, we found that 85% showed no human interaction with the water cycle and 98% omitted any sign of climate change or waterpollution (Abbott et al., 2019). Additionally, 92% of diagrams depicted verdant, temperate ecosystems with abundant freshwater and 95% showed only a single river basin. It did not matter if the diagrams came from textbooks, scientific articles, or the internet, nor if they were old or new; most showed an undisturbed water cycle, free from human interference. These depictions contrast starkly with the state of the water cycle in the Anthropocene, when land conversion, human water use, and climate change affect nearly every water pool and flux (Wurtsbaugh et al., 2017; Falkenmark et al., 2019; Wine and Davison, 2019). The dimensions and scale of human interference with water are manifest in failing fossil aquifersin the worldâs great agricultural regions (Famiglietti, 2014), accelerating ice discharge from the Arctic (Box et al., 2018), and instability in atmospheric rivers that support continental rainfall (Paul et al., 2016).We believe that incorrect water cycle diagrams are a symptom of a much deeper and widespread problem about how humanity relates to water on Earth. Society does not understand how the water cycle works nor how humans fit into it (Attari, 2014; Linton, 2014; Abbott et al., 2019). In response to this crisis of understanding, we call on researchers, educators, journalists, lawyers, and policy makers to change how we conceptualize and present the global water cycle. Specifically, we must teach where water comes from, what determines its availability, and how many individuals and ecosystems are in crisis because of water mismanagement, climate change, and land conversion. Because the drivers of the global water crisis are truly global, ensuring adequate water for humans and ecosystems will require coordinated efforts that extend beyond geopolitical borders and outlast the tenure of individual administrations (Keys et al., 2017; Adler, 2019). This level of coordination and holistic thinking requires widespread understanding of the water cycle and the global water crisis. Making the causes and consequences of the water crisis visible in our diagrams is atractable and important step towards the goal of a sustainable relationship with water that includes ecosystems and society
Managing the whole landscape: historical, hybrid, and novel ecosystems
The reality confronting ecosystem managers today is one of heterogeneous, rapidly transforming landscapes, particularly in the areas more affected by urban and agricultural development. A landscape management framework that incorporates all systems, across the spectrum of degrees of alteration, provides a fuller set of options for how and when to intervene, uses limited resources more effectively, and increases the chances of achieving management goals. That many ecosystems have departed so substantially from their historical trajectory that they defy conventional restoration is not in dispute. Acknowledging novel ecosystems need not constitute a threat to existing policy and management approaches. Rather, the development of an integrated approach to management interventions can provide options that are in tune with the current reality of rapid
ecosystem change
EL CAMPO DE LA SALUD AMBIENTAL: UNA OPORTUNIDAD PARA ALCANZAR LAS METAS DE LA EDUCACIĂN CIENTĂFICA
Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment
As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%â85% of permafrost carbon release can still be avoided if human emissions are actively reduced
- âŠ