627 research outputs found

    Microdissection of human chromosomes by a laser microbeam

    Get PDF
    A laser microbeam apparatus, based on an excimer laser pumped dye laser is used to microdissect human chromosomes and to isolate a single chromosome slice

    Light depolarization effects in tip enhanced Raman spectroscopy of silicon (001) and gallium arsenide (001)

    Get PDF
    We report on the effects of light depolarization induced by sharp metallic tips in Tip-Enhanced Raman Spectroscopy (TERS). Experiments on Si(001) and GaAs(001) crystals show that the excitation field depolarization induces a selective enhancement of specific Raman modes, depending on their Raman tensor symmetry. A complete polarization analysis of the light backscattered from the tip confirms the TERS findings. The spatial confinement of the depolarization field is studied and its dependence on the excitation wavelength and power are explored

    Nonlinear partial differential equations and applications: Gene expression profiling of isogenic cells with different TP53 gene dosage reveals numerous genes that are affected by TP53 dosage and identifies CSPG2 as a direct target of p53

    Get PDF
    TP53 does not fully comply with the Knudson model [Knudson, A. G., Jr. (1971) Proc. Natl. Acad. Sci. USA 68, 820–823] in that a reduction of constitutional expression of p53 may be sufficient for tumor predisposition . This finding suggests a gene-dosage effect for p53 function. To determine whether TP53 gene dosage affects the transcriptional regulation of target genes, we performed oligonucleotide-array gene expression analysis by using human cells with wild-type p53 (p53 +/+), or with one (p53 +/−), or both (p53 −/−) TP53 alleles disrupted by homologous recombination. We identified 35 genes whose expression is significantly correlated to the dosage of TP53. These genes are involved in a variety of cellular processes including signal transduction, cell adhesion, and transcription regulation. Several of them are involved in neurogenesis and neural crest migration, developmental processes in which p53 is known to play a role. Motif search analysis revealed that of the genes highly expressed in p53 +/+ and +/− cells, several contain a putative p53 consensus binding site (bs), suggesting that they could be directly regulated by p53. Among those genes, we chose CSPG2 (which encodes versican) for further study because it contains a bona fide p53 bs in its first intron and its expression highly correlates with TP53 dosage. By using in vitro and in vivo assays, we showed CSPG2 to be directly transactivated by p53. In conclusion, we developed a strategy to demonstrate that many genes are affected by TP53 gene dosage for their expression. We report several candidate genes as potential downstream targets of p53 in nonstressed cells. Among them, CSPG2 is validated as being directly transactivated by p53. Our method provides a useful tool to elucidate additional mechanisms by which p53 exerts its functions

    Chromosome assignment of two cloned DNA probes hybridizing predominantly to human sex chromosomes

    Get PDF
    In situ hybridization experiments were carried out with two clones, YACG 35 and 2.8, which had been selected from two genomic libraries strongly enriched for the human Y chromosome. Besides the human Y chromosome, both sequences strongly hybridized to the human X chromosome, with few minor binding sites on autosomes. In particular, on the X chromosome DNA from clone YACG 35 hybridized to the centromeric region and the distal part of the short arm (Xp2.2). On the Y chromosome, the sequence was assigned to one site situated in the border region between Yq1.1 and Yq1.2. DNA from clone 2.8 also hybridized to the centromeric region of the X and the distal part of the short arm (Xq2.2). On the Y, however, two binding sites were observed (Yp1.1 and Yq1.2). The findings indicate that sex chromosomal sequences may be localized in homologous regions (as suggested from meiotic pairing) but also at ectopic sites

    Somatic MED12 mutations are associated with poor prognosis markers in chronic lymphocytic leukemia

    Get PDF
    Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. We performed systematic database search and identified highly specific MED12 mutations in CLL patients. To study this further, we collected three independent sample series comprising over 700 CLL samples and screened MED12 exons 1 and 2 by direct sequencing. Mutations were identified at significant frequency in all three series with a combined mutation frequency of 5.2% (37/709). Positive mutation status was found to be associated with unmutated IGHV and ZAP70 expression, which are well-known poor prognosis markers in CLL. Our results recognize CLL as the first extrauterine cancer type where 5'terminus of MED12 is mutated at significant frequency. Functional analyses have shown that these mutations lead to dissociation of Cyclin C-CDK8/19 from the core Mediator and to the loss of Mediator-associated CDK kinase activity. Additional studies on the role of MED12 mutation status as a putative prognostic factor as well as mutations' exact tumorigenic mechanism in CLL are warranted.Peer reviewe

    Profiling allele-specific gene expression in brains from individuals with autism spectrum disorder reveals preferential minor allele usage.

    Get PDF
    One fundamental but understudied mechanism of gene regulation in disease is allele-specific expression (ASE), the preferential expression of one allele. We leveraged RNA-sequencing data from human brain to assess ASE in autism spectrum disorder (ASD). When ASE is observed in ASD, the allele with lower population frequency (minor allele) is preferentially more highly expressed than the major allele, opposite to the canonical pattern. Importantly, genes showing ASE in ASD are enriched in those downregulated in ASD postmortem brains and in genes harboring de novo mutations in ASD. Two regions, 14q32 and 15q11, containing all known orphan C/D box small nucleolar RNAs (snoRNAs), are particularly enriched in shifts to higher minor allele expression. We demonstrate that this allele shifting enhances snoRNA-targeted splicing changes in ASD-related target genes in idiopathic ASD and 15q11-q13 duplication syndrome. Together, these results implicate allelic imbalance and dysregulation of orphan C/D box snoRNAs in ASD pathogenesis

    Men's values-based factors on prostate cancer risk genetic testing: A telephone survey

    Get PDF
    BACKGROUND: While a definitive genetic test for Hereditary Prostate Cancer (HPC) is not yet available, future HPC risk testing may become available. Past survey data have shown high interest in HPC testing, but without an in-depth analysis of its underlying rationale to those considering it. METHODS: Telephone computer-assisted interviews of 400 men were conducted in a large metropolitan East-coast city, with subsequent development of psychometric scales and their correlation with intention to receive testing. RESULTS: Approximately 82% of men interviewed expressed that they "probably" or "definitely" would get genetic testing for prostate cancer risk if offered now. Factor analysis revealed four distinct, meaningful factors for intention to receive genetic testing for prostate cancer risk. These factors reflected attitudes toward testing and were labeled "motivation to get testing," "consequences and actions after knowing the test result," "psychological distress," and "beliefs of favorable outcomes if tested" (α = 0.89, 0.73, 0.73, and 0.60, respectively). These factors accounted for 70% of the total variability. The domains of motivation (directly), consequences (inversely), distress (inversely), and positive expectations (directly) all correlated with intention to receive genetic testing (p < 0.001). CONCLUSIONS: Men have strong attitudes favoring genetic testing for prostate cancer risk. The factors most associated with testing intention include those noted in past cancer genetics studies, and also highlights the relevance in considering one's motivation and perception of positive outcomes in genetic decision-making

    CHEK2 1100delC in patients with metachronous cancers of the breast and the colorectum

    Get PDF
    BACKGROUND: Development of multiple primary tumors is a hallmark of hereditary cancer. At least 1/10 of breast cancers and colorectal cancers occur because of heredity and recently the cell cycle kinase 2, CHEK2 1100delC allele has been identified at a particularly high frequency in families with hereditary breast and colorectal cancer. METHODS: We utilized the Southern Sweden population-based cancer registry to identify women with double primary breast and colorectal cancer and sequenced tumor material in order to assess the contribution of the CHEK2 1100delC to the development of such metachronous tumors. RESULTS: Among the 75 patients successfully analyzed, 2 (2.5%) carried the CHEK2 1100delC allele. which was not significantly different (p = 0.26) from the 1% (3/300) carriers identified in the control group. CONCLUSION: In summary, our data suggest that the CHEK2 1100delC is not a major cause of double primary breast and colorectal cancer in Sweden, which suggests that this patient group should not routinely be screened for the CHEK2 1100delC variant
    • …
    corecore