470 research outputs found

    Gender differences in colour naming

    Get PDF
    Gender differences in colour naming were explored using a web-based experiment in English. Each participant named twenty colours selected from 600 Munsell samples, presented one at a time against a neutral background. Colour names and typing onset response times were registered. For the eleven basic colour terms, elicitation frequency was comparable for both genders. Females demonstrated more elaborated colour vocabulary, with more descriptors in general and more non-basic monolexemic terms; they also named colours faster than males. The two genders differ in the repertoire of frequent colour terms: a Bayesian synthetic observer revealed that women segment colour space linguistically more densely in the “warm” area whereas men do so in the “cool” area. Current “nurture” and “nature” explanations of why females excel in colour naming behaviour are considered

    Error by design: Methods for predicting device usability

    Get PDF
    This paper introduces the idea of predicting ‘designer error’ by evaluating devices using Human Error Identification (HEI) techniques. This is demonstrated using Systematic Human Error Reduction and Prediction Approach (SHERPA) and Task Analysis For Error Identification (TAFEI) to evaluate a vending machine. Appraisal criteria which rely upon user opinion, face validity and utilisation are questioned. Instead a quantitative approach, based upon signal detection theory, is recommended. The performance of people using SHERPA and TAFEI are compared with heuristic judgement and each other. The results of these studies show that both SHERPA and TAFEI are better at predicting errors than the heuristic technique. The performance of SHERPA and TAFEI are comparable, giving some confidence in the use of these approaches. It is suggested that using HEI techniques as part of the design and evaluation process could help to make devices easier to use

    Absolute identification by relative judgment

    Get PDF
    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative relative judgment model (RJM) in which the elemental perceptual units are representations of the differences between current and previous stimuli. These differences are used, together with the previous feedback, to respond. Without using long-term representations of absolute magnitudes, the RJM accounts for (a) information transmission limits, (b) bowed serial position effects, and (c) sequential effects, where responses are biased toward immediately preceding stimuli but away from more distant stimuli (assimilation and contrast)

    When Models Interact with their Subjects: The Dynamics of Model Aware Systems

    Get PDF
    A scientific model need not be a passive and static descriptor of its subject. If the subject is affected by the model, the model must be updated to explain its affected subject. In this study, two models regarding the dynamics of model aware systems are presented. The first explores the behavior of "prediction seeking" (PSP) and "prediction avoiding" (PAP) populations under the influence of a model that describes them. The second explores the publishing behavior of a group of experimentalists coupled to a model by means of confirmation bias. It is found that model aware systems can exhibit convergent random or oscillatory behavior and display universal 1/f noise. A numerical simulation of the physical experimentalists is compared with actual publications of neutron life time and {\Lambda} mass measurements and is in good quantitative agreement.Comment: Accepted for publication in PLoS-ON

    A field study of team working in a new human supervisory control system

    Get PDF
    This paper presents a case study of an investigation into team behaviour in an energy distribution company. The main aim was to investigate the impact of major changes in the company on system performance, comprising human and technical elements. A socio-technical systems approach was adopted. There were main differences between the teams investigated in the study: the time of year each control room was studied (i.e. summer or winter),the stage of development each team was in (i.e. 10 months), and the team structure (i.e. hierarchical or heterarchical). In all other respects the control rooms were the same: employing the same technology and within the same organization. The main findings were: the teams studied in the winter months were engaged in more `planning’ and `awareness’ type of activities than those studies in the summer months. Newer teams seem to be engaged in more sharing of information than older teams, which maybe indicative of the development process. One of the hierarchical teams was engaged in more `system-driven’ activities than the heterarchical team studied at the same time of year. Finally, in general, the heterarchical team perceived a greater degree of team working culture than its hierarchical counterparts. This applied research project confirms findings from laboratory research and emphasizes the importance of involving ergonomics in the design of team working in human supervisory control

    Algorithmic Complexity for Short Binary Strings Applied to Psychology: A Primer

    Full text link
    Since human randomness production has been studied and widely used to assess executive functions (especially inhibition), many measures have been suggested to assess the degree to which a sequence is random-like. However, each of them focuses on one feature of randomness, leading authors to have to use multiple measures. Here we describe and advocate for the use of the accepted universal measure for randomness based on algorithmic complexity, by means of a novel previously presented technique using the the definition of algorithmic probability. A re-analysis of the classical Radio Zenith data in the light of the proposed measure and methodology is provided as a study case of an application.Comment: To appear in Behavior Research Method

    Evaluating the application of research-based guidance to the design of an emergency preparedness leaflet.

    Get PDF
    Guidelines for the design of emergency communications were derived from primary research and interrogation of the literature. The guidelines were used to re-design a nuclear emergency preparedness leaflet routinely distributed to households in the local area. Pre-test measures of memory for, and self-reported understanding of, nuclear safety information were collected. The findings revealed high levels of non-receipt of the leaflet, and among those who did receive it, memory for safety advice was poor. Subjective evaluations of the trial leaflet suggested that it was preferred and judged easier to understand than the original. Objective measures of memory for the two leaflets were also recorded, once after the study period, and again one week or four weeks later. Memory for the advice was better, at all time periods, when participants studied the trial leaflet. The findings showcase evaluation of emergency preparedness literature and suggest that extant research findings can be applied to the design of communications to improve memory and understandability. STATEMENT OF RELEVANCE: Studies are described that showcase the use of research-based guidelines to design emergency communications and provide both subjective and objective data to support designing emergency communications in this way. In addition, the research evaluates the effectiveness of emergency preparedness leaflets that are routinely distributed to households. This work is of relevance to academics interested in risk communication and to practitioners involved in civil protection and emergency preparedness

    Systems, interactions and macrotheory

    Get PDF
    A significant proportion of early HCI research was guided by one very clear vision: that the existing theory base in psychology and cognitive science could be developed to yield engineering tools for use in the interdisciplinary context of HCI design. While interface technologies and heuristic methods for behavioral evaluation have rapidly advanced in both capability and breadth of application, progress toward deeper theory has been modest, and some now believe it to be unnecessary. A case is presented for developing new forms of theory, based around generic “systems of interactors.” An overlapping, layered structure of macro- and microtheories could then serve an explanatory role, and could also bind together contributions from the different disciplines. Novel routes to formalizing and applying such theories provide a host of interesting and tractable problems for future basic research in HCI

    Hierarchical task analysis: Developments, applications and extensions

    Get PDF
    Hierarchical Task Analysis (HTA) is a core ergonomics approach with pedigree of over thirty years continuous use. At its heart, HTA is based upon a theory of performance and has only three governing principles. Originally developed as a means of determining training requirements, there was no way the initial pioneers of HTA could have foreseen the extent of its success. HTA has endured as a way of representing a system sub-goal hierarchy for extended analysis. It has been used for a range of applications, including interface design and evaluation, allocation of function, job aid design, error prediction, and workload assessment. Ergonomists are still developing new ways of using HTA which has assured the continued use of the approach for the foreseeable future
    corecore