21 research outputs found

    The Relationship Between Stroke Patients Characteristics and Family Support with Compliance Rehabilitation

    Full text link
    Stroke is a cerebrovascular disease, it is brain function disorders associated with the disease of the blood vessels that supply the brain. The impact of stroke is paralysis. Family support is things that are needed to be considered in the treatment of stroke patients. It is very involved in the compliance rehabilitation of patients to prevent the re-occurrence of stroke. Characteristics of stroke patients may also affect the compliance rehabilitation. The purpose of this research is to determine the relationship between stroke patients characteristics and family support to compliance rehabilitation at the Medical Rehabilitation Unit RSU Haji Surabaya. This research was an analytic observational research with cross sectional design. The subjects of this research are taken using total population technique. The independent variables in this research is family support. The dependent variable is compliance rehabilitation. The results of this research are presented in the form of frequency distributions and calculate the strength of the relationship with Phi coefficient. The result of this research shows that there is a strong relationship between family support and compliance rehabilitation (r=0.582). There are weak relationship between ages (r=-0,027), gender (r=0,092), level of education (r= -0,295), work (r=0,098), and marital status (r=0,319). The conclusion is family support may affect compliance rehabilitation of stroke patients. It is recommended for health workers to provide counseling to improve family support in curing stroke patients

    Genome-wide comparative transcriptome analysis of CMS-D2 and its maintainer and restorer lines in upland cotton

    No full text
    Abstract Background Cytoplasmic male sterility (CMS) conferred by the cytoplasm from Gossypium harknessii (D2) is an important system for hybrid seed production in Upland cotton (G. hirsutum). The male sterility of CMS-D2 (i.e., A line) can be restored to fertility by a restorer (i.e., R line) carrying the restorer gene Rf1 transferred from the D2 nuclear genome. However, the molecular mechanisms of CMS-D2 and its restoration are poorly understood. Results In this study, a genome-wide comparative transcriptome analysis was performed to identify differentially expressed genes (DEGs) in flower buds among the isogenic fertile R line and sterile A line derived from a backcross population (BC8F1) and the recurrent parent, i.e., the maintainer (B line). A total of 1464 DEGs were identified among the three isogenic lines, and the Rf1-carrying Chr_D05 and its homeologous Chr_A05 had more DEGs than other chromosomes. The results of GO and KEGG enrichment analysis showed differences in circadian rhythm between the fertile and sterile lines. Eleven DEGs were selected for validation using qRT-PCR, confirming the accuracy of the RNA-seq results. Conclusions Through genome-wide comparative transcriptome analysis, the differential expression profiles of CMS-D2 and its maintainer and restorer lines in Upland cotton were identified. Our results provide an important foundation for further studies into the molecular mechanisms of the interactions between the restorer gene Rf1 and the CMS-D2 cytoplasm

    Adaptability and Stability Comparisons of Inbred and Hybrid Cotton in Yield and Fiber Quality Traits

    No full text
    Cotton (Gossypium hirsutum L.) is the most important fiber crop worldwide. Characterizing genotype by environment interaction (GEI) is helpful to identify stable genotypes across diverse environments. This study was conducted in six environments to compare the performance and stability of 11 inbred lines and 30 intraspecific hybrids of cotton. Analysis of variance using the additive main effects and multiplicative interaction model revealed that genotype (G), environment (E), and GEI had highly significant effects on yield and fiber quality traits. Mean comparisons among genotypes showed that most hybrids had higher means for yield and fiber quality traits than inbred genotypes. Additionally, a larger portion of the total variability in yield traits was explained by E than G and GEI. However, G and GEI combined contributed more to the total variance in fiber traits than E. The first three interaction principal components explained the majority of GEI in all traits under study. For most traits, the environments were not clustered together, implying contrasting interaction with genotypes. Stability measurements indicated that most hybrids showed more stable performance than inbred lines for all traits. The hybrids SJ48-1 × Z98-15 and L28-2 × A2-10 displayed both better performance and stability in yield and fiber quality traits. Our results show the importance of hybridization for improving cotton yield and fiber quality in a wide range of environments

    Integrated Methylome and Transcriptome Analysis between the CMS-D2 Line ZBA and Its Maintainer Line ZB in Upland Cotton

    No full text
    DNA methylation is an important epigenetic modification involved in multiple biological processes. Altered methylation patterns have been reported to be associated with male sterility in some plants, but their role in cotton cytoplasmic male sterility (CMS) remains unclear. Here, integrated methylome and transcriptome analyses were conducted between the CMS-D2 line ZBA and its near-isogenic maintainer line ZB in upland cotton. More methylated cytosine sites (mCs) and higher methylation levels (MLs) were found among the three sequence contexts in ZB compared to ZBA. A total of 4568 differentially methylated regions (DMRs) and 2096 differentially methylated genes (DMGs) were identified. Among the differentially expressed genes (DEGs) associated with DMRs (DMEGs), 396 genes were upregulated and 281 genes were downregulated. A bioinformatics analysis of these DMEGs showed that hyper-DEGs were significantly enriched in the “oxidative phosphorylation” pathway. Further qRT-PCR validation indicated that these hypermethylated genes (encoding the subunits of mitochondrial electron transport chain (ETC) complexes I and V) were all significantly upregulated in ZB. Our biochemical data revealed a higher extent of H2O2 production but a lower level of adenosine triphosphate (ATP) synthesis in CMS-D2 line ZBA. On the basis of the above results, we propose that disrupted DNA methylation in ZBA may disrupt the homeostasis of reactive oxygen species (ROS) production and ATP synthesis in mitochondria, triggering a burst of ROS that is transferred to the nucleus to initiate programmed cell death (PCD) prematurely, ultimately leading to microspore abortion. This study illustrates the important role of DNA methylation in cotton CMS

    A combined small RNA and transcriptome sequencing analysis reveal regulatory roles of miRNAs during anther development of Upland cotton carrying cytoplasmic male sterile Gossypium harknessii (D2) cytoplasm

    No full text
    Abstract Background Cytoplasmic male sterility (CMS) in flowering plants is usually caused by incompatibility between mitochondrial and nuclear genomes, and can be restored by nuclear genes known as restorer-of-fertility (Rf). Although the CMS/Rf system is useful and convenient for economic production of commercial hybrid seed, the molecular mechanisms of CMS occurrence and fertility restoration in cotton are unclear. Results Here, a combined small RNA and transcriptome sequencing analysis was performed on floral buds at the meiosis stage in three-line hybrid cotton system, and differentially expressed microRNAs (DEMs) and their target genes were identified and further analyzed for a possible involvement in CMS and fertility restoration. Totally 10 and 30 differentially expressed miRNA-target gene pairs were identified in A-B and A-R comparison group, respectively. A putative regulatory network of CMS occurrence and fertility restoration-related miRNA-target pairs during anther development were then constructed. The RLM-RACE analysis showed that gra-miR7505b regulates a PPR gene (Gh_D05G3392) by cleaving precisely at the 643聽nt and 748聽nt sites. The further analysis indicated that the sequence variation in the binding regions of Gh_D05G3392 and Gh_D05G3356 may cause a lower cleavage efficiency of the PPR genes by miR7505b and miR7505 in R line, respectively, leading to the up-regulation of the PPR genes and fertility restoration. These results have established their genetic involvement in fertility restoration in the CMS-D2 system. Conclusion Our combined miRNA and transcriptome analysis in three-line hybrid cotton system provides new insights into the molecular mechanisms of CMS occurrence and fertility restoration, which will contribute to further hybrid breeding in cotton
    corecore