14 research outputs found

    Along-strike segmentation of the South China Sea margin imposed by inherited pre-rift basement structures

    Get PDF
    Multibeam bathymetric, seismic and borehole data are used to investigate a large-scale strike-slip structure, the Baiyun-Liwan Fault Zone, in the northern South China Sea. This fault zone comprises NW- to NE-striking faults and negative flower structures that were generated by oblique extensional displacement. Notably, the interpreted data reveals that the Baiyun-Liwan Fault Zone was active during the Cenozoic, recording intense magmatism, and accommodating significant intraplate deformation during progressive continental rifting and ocean spreading. It bounds two distinct crustal segments and played a significant role in segmenting the northern margin of the South China Sea. The geometry of faults and strata within the Baiyun-Liwan Fault Zone also controlled local sediment routing and depocentre evolution during the Cenozoic. As basement and syn-rift structures change markedly across the Baiyun-Liwan Fault Zone, we propose this structure to be inherited from a lithospheric-scale fault zone separating the Mesozoic arc from forearc-related terrains. We therefore stress the importance of pre-existing structures in the development of rifted margins, with the example provided by the Baiyun-Liwan Fault Zone having profound implications for palaeogeographic reconstructions in the South China Sea. At present, the Baiyun-Liwan Fault Zone is incised by the Pearl River Canyon and eroded by recurrent submarine landslides, forming a major area of sediment bypass towards the abyssal plain

    Identification of Tea Plant Purple Acid Phosphatase Genes and Their Expression Responses to Excess Iron

    No full text
    Purple acid phosphatase (PAP) encoding genes are a multigene family. PAPs require iron (Fe) to exert their functions that are involved in diverse biological roles including Fe homeostasis. However, the possible roles of PAPs in response to excess Fe remain unknown. In this study, we attempted to understand the regulation of PAPs by excess Fe in tea plant (Camellia sinensis). A genome-wide investigation of PAP encoding genes identified 19 CsPAP members based on the conserved motifs. The phylogenetic analysis showed that PAPs could be clustered into four groups, of which group II contained two specific cysteine-containing motifs “GGECGV„ and “YERTC„. To explore the expression patterns of CsPAP genes in response to excessive Fe supply, RNA-sequencing (RNA-seq) analyses were performed to compare their transcript abundances between tea plants that are grown under normal and high iron conditions, respectively. 17 members were shown to be transcribed in both roots and leaves. When supplied with a high amount of iron, the expression levels of four genes were significantly changed. Of which, CsPAP15a, CsPAP23 and CsPAP27c were shown as downregulated, while the highly expressed CsPAP10a was upregulated. Moreover, CsPAP23 was found to be alternatively spliced, suggesting its post-transcriptional regulation. The present work implicates that some CsPAP genes could be associated with the responses of tea plants to the iron regime, which may offer a new direction towards a further understanding of iron homeostasis and provide the potential approaches for crop improvement in terms of iron biofortification

    Travel-Time Inversion Method of Converted Shear Waves Using RayInvr Algorithm

    No full text
    The detailed studies of converted S-waves recorded on the Ocean Bottom Seismometer (OBS) can provide evidence for constraining lithology and geophysical properties. However, the research of converted S-waves remains a weakness, especially the S-waves’ inversion. In this study, we applied a travel-time inversion method of converted S-waves to obtain the crustal S-wave velocity along the profile NS5. The velocities of the crust are determined by the following four aspects: (1) modelling the P-wave velocity, (2) constrained sediments Vp/Vs ratios and S-wave velocity using PPS phases, (3) the correction of PSS phases’ travel-time, and (4) appropriate parameters and initial model are selected for inversion. Our results show that the vs. and Vp/Vs of the crust are 3.0–4.4 km/s and 1.71–1.80, respectively. The inversion model has a similar trend in velocity and Vp/Vs ratios with the forward model, due to a small difference with ∆Vs of 0.1 km/s and ∆Vp/Vs of 0.03 between two models. In addition, the high-resolution inversion model has revealed many details of the crustal structures, including magma conduits, which further supports our method as feasible

    Widespread hydrothermal vents and associated volcanism record prolonged Cenozoic magmatism in the South China Sea

    Get PDF
    The continental margin of the northern South China Sea is considered to be a magma-poor rifted margin. This work uses new seismic, bathymetric, gravity, and magnetic data to reveal how extensively magmatic processes have reshaped the latter continental margin. Widespread hydrothermal vent complexes and magmatic edifices such as volcanoes, igneous sills, lava flows, and associated domes are confirmed in the broader area of the northern South China Sea. Newly identified hydrothermal vents have crater- and mound-shaped surface expressions, and occur chiefly above igneous sills and volcanic edifices. Detailed stratigraphic analyses of volcanoes and hydrothermal vents suggest that magmatic activity took place in discrete phases between the early Miocene and the Quaternary. Importantly, the occurrence of hydrothermal vents close to the present seafloor, when accompanied by shallow igneous sills, suggest that fluid seepage is still active, well after main phases of volcanism previously documented in the literature. After combining geophysical and geochemical data, this study postulates that the extensive post-rift magmatism in the northern South China Sea is linked to the effect of a mantle plume over a long time interval. We propose that prolonged magmatism resulted in contact metamorphism in carbon-rich sediments, producing large amounts of hydrothermal fluid along the northern South China Sea. Similar processes are expected in parts of magma-poor margins in association with CO2/CH4 and heat flow release into sea water and underlying strata

    The Kinematics and Dynamics of <i>Schizopygopsis malacanthus</i> Swimming during <i>U<sub>crit</sub></i> Testing

    No full text
    The swimming kinematics (how fish move) and dynamics (how forces effect movement) of Schizopygopsis malacanthus were investigated during the determination of Ucrit by stepped velocity testing. A video tracking program was used to record and analyze the motion of five test fish in a Brett-type flume during each velocity step. The findings fell into three groups: (1) Even when flow was uniform, fish did not swim steadily, with speeds fluctuating by 2.2% to 8.4% during steady swimming. The proportion of unsteady swimming time increased with water velocity, and defining steady and unsteady swimming statistically, in terms of the definition of standard deviation of instantaneous displacements, may have higher accuracy. (2) In steady swimming, the forward velocity and acceleration of fish were correlated with body length (p 2) occurred during unsteady swimming, but these measurements may not be definitive because of tank space constraints on fish movement and the passive behavior of the test fish with respect to acceleration. (3) Burst-coast swimming in still water, investigated by previous scholars as an energy conserving behavior, is not the same as the gait transition from steady to unsteady swimming in flowing water. In this study, the axial force of fish swimming in the unsteady mode was significantly higher (×1.2~1.6) than in the steady mode, as was the energy consumed (×1.27~3.33). Thus, gait transition increases, rather than decreases, energy consumption. Our characterization of the kinematics and dynamics of fish swimming provides important new information to consider when indices of swimming ability from controlled tank testing are applied to fish passage design

    Can Glacial Sea‐Level Drop‐Induced Gas Hydrate Dissociation Cause Submarine Landslides?

    No full text
    We conducted two‐dimensional numerical simulations to investigate the mechanisms underlying the strong spatiotemporal correlation observed between submarine landslides and gas hydrate dissociation due to glacial sea‐level drops. Our results suggest that potential plastic deformation or slip could occur at localized and small scales in the shallow‐water portion of the gas hydrate stability zone (GHSZ). This shallow‐water portion of the GHSZ typically lies within the area enclosed by three points: the BGHSZ–seafloor intersection, the seafloor at ∼600 m below sea level (mbsl), and the base of the GHSZ (BGHSZ) at ∼1,050 mbsl in low‐latitude regions. The deep BGHSZ (>1,050 mbsl) could not slip; therefore, the entire BGHSZ was not a complete slip surface. Glacial hydrate dissociation alone is unlikely to cause large‐scale submarine landslides. Observed deep‐water (much greater than 600 mbsl) turbidites containing geochemical evidence of glacial hydrate dissociation potentially formed from erosion or detachment in the GHSZ pinch‐out zone. Plain Language Summary Many submarine landslides spatiotemporally correlate with gas hydrate dissociation. However, direct mechanical evidence supporting whether the overpressure and deformation due to glacial sea‐level drop‐induced hydrate dissociation are adequate for triggering submarine landslides is lacking. Here, we present two‐dimensional thermal‐hydraulic‐chemical and geomechanical models of a gas‐hydrate system in response to glacial sea‐level drops and conduct sensitivity analyses of the model behavior under a wide range of key conditions from a global perspective. Our simulations suggest that glacial hydrate dissociation might induce plastic deformation or slip at localized and small scales only possibly within the shallow‐water portion of the hydrate stability zone. The deep part (>1,050 m below sea level) of the bottom boundary of the hydrate stability zone could not slip; therefore, the entire bottom boundary of the hydrate stability zone was not a complete slip surface. We demonstrate that glacial hydrate dissociation alone is unlikely to trigger large‐scale submarine landslides. Our work highlights the vicinity of the upper limit of the hydrate stability zone (where the base of the hydrate stability zone intersects the seafloor) as an important area for investigating overpressure and focused fluid flow, localized plastic deformation or slip, and downslope sediment transport related to glacial hydrate dissociation. Key Points Glacial hydrate dissociation might cause potential plastic deformation or slip at localized and small scales in shallow parts of the GHSZ The large deformation surface at the BGHSZ boundary of the potential plastic deformation zone was not a complete slip surface Glacial sea‐level drop‐induced gas hydrate dissociation alone is unlikely to have caused large‐scale submarine landslide

    Along-strike segmentation of the South China Sea margin imposed by inherited pre-rift basement structures

    No full text
    Multibeam bathymetric, seismic and borehole data are used to investigate a large-scale strike-slip structure, the Baiyun-Liwan Fault Zone, in the northern South China Sea. This fault zone comprises NW- to NE-striking faults and negative flower structures that were generated by oblique extensional displacement. Notably, the interpreted data reveals that the Baiyun-Liwan Fault Zone was active during the Cenozoic, recording intense magmatism, and accommodating significant intraplate deformation during progressive continental rifting and ocean spreading. It bounds two distinct crustal segments and played a significant role in segmenting the northern margin of the South China Sea. The geometry of faults and strata within the Baiyun-Liwan Fault Zone also controlled local sediment routing and depocentre evolution during the Cenozoic. As basement and syn-rift structures change markedly across the Baiyun-Liwan Fault Zone, we propose this structure to be inherited from a lithospheric-scale fault zone separating the Mesozoic arc from forearc-related terrains. We therefore stress the importance of pre-existing structures in the development of rifted margins, with the example provided by the Baiyun-Liwan Fault Zone having profound implications for palaeogeographic reconstructions in the South China Sea. At present, the Baiyun-Liwan Fault Zone is incised by the Pearl River Canyon and eroded by recurrent submarine landslides, forming a major area of sediment bypass towards the abyssal plain
    corecore