82 research outputs found

    Perpendicular magnetic anisotropy in as-deposited CoFeB/MgO thin films

    Full text link
    Fabrication of perpendicularly magnetized ferromagnetic films on various buffer layers, especially on numerous newly discovered spin-orbit torque (SOT) materials to construct energy-efficient spin-orbitronic devices, is a long-standing challenge. Even for the widely used CoFeB/MgO structures, perpendicular magnetic anisotropy (PMA) can only be established on limited buffer layers through post-annealing above 300 {\deg}C. Here, we report that the PMA of CoFeB/MgO films can be established reliably on various buffer layers in the absence of post-annealing. Further results show that precise control of MgO thickness, which determines oxygen diffusion in the underneath CoFeB layer, is the key to obtaining the as-deposited PMA. Interestingly, contrary to previous understanding, post-annealing does not influence the well-established as-deposited PMA significantly but indeed enhances unsaturated PMA with a thick MgO layer by modulating oxygen distributions, rather than crystallinity or Co- and Fe-O bonding. Moreover, our results indicate that oxygen diffusion also plays a critical role in the PMA degradation at high temperature. These results provide a practical approach to build spin-orbitronic devices based on various high-efficient SOT materials.Comment: 15 pages, 4 figure

    Effects of climate change and anthropogenic activity on ranges of vertebrate species endemic to the Qinghai - Tibet Plateau over 40 years

    Get PDF
    Over the past 40 years, the climate has been changing and human disturbance has increased in the vast Qinghai¿Tibet Plateau (QTP). These 2 factors are expected to affect the distribution of a large number of endemic vertebrate species. However, quantitative relationships between range shifts and climate change and human disturbance of these species in the QTP have rarely been evaluated. We used occurrence records of 19 terrestrial vertebrate species (birds, mammals, amphibians, and reptiles) occurring in the QTP from 1980 to 2020 to quantify the effects of climate change and anthropogenic impacts on the distribution of these 4 taxonomic groups and estimated species range changes in each species. The trend in distribution changes differed among the taxonomic groups, although, generally, ranges shifted to central QTP. Climate change contributed more to range variation than human disturbance (the sum of the 4 climatic variables contributed more than the sum of the 4 human disturbance variables for all 4 taxonomic groups). Suitable geographic range increased for most mammals, amphibians, and reptiles (+27.6%, +18.4%, and +27.8% on average, respectively), whereas for birds range decreased on average by 0.9%. Quantitative evidence for climate change and human disturbance associations with range changes for endemic vertebrate species in the QTP can provide useful insights into biodiversity conservation under changing environments.This project was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (2019QZKK0501); the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (XDB31000000); the National Natural Science Foundation of China (32070410; 32100396); the Youth Innovation Promotion Association of CAS (2021370); and the Sichuan Science and Technology Program (2023NSFSC0197)INTRODUCTION METHODS Species distribution data Statistical analyses RESULTS DISCUSSION ACKNOWLEDGMENT

    Review of advanced road materials, structures, equipment, and detection technologies

    Get PDF
    As a vital and integral component of transportation infrastructure, pavement has a direct and tangible impact on socio-economic sustainability. In recent years, an influx of groundbreaking and state-of-the-art materials, structures, equipment, and detection technologies related to road engineering have continually and progressively emerged, reshaping the landscape of pavement systems. There is a pressing and growing need for a timely summarization of the current research status and a clear identification of future research directions in these advanced and evolving technologies. Therefore, Journal of Road Engineering has undertaken the significant initiative of introducing a comprehensive review paper with the overarching theme of “advanced road materials, structures, equipment, and detection technologies”. This extensive and insightful review meticulously gathers and synthesizes research findings from 39 distinguished scholars, all of whom are affiliated with 19 renowned universities or research institutions specializing in the diverse and multidimensional field of highway engineering. It covers the current state and anticipates future development directions in the four major and interconnected domains of road engineering: advanced road materials, advanced road structures and performance evaluation, advanced road construction equipment and technology, and advanced road detection and assessment technologies

    Single cell atlas for 11 non-model mammals, reptiles and birds.

    Get PDF
    The availability of viral entry factors is a prerequisite for the cross-species transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Large-scale single-cell screening of animal cells could reveal the expression patterns of viral entry genes in different hosts. However, such exploration for SARS-CoV-2 remains limited. Here, we perform single-nucleus RNA sequencing for 11 non-model species, including pets (cat, dog, hamster, and lizard), livestock (goat and rabbit), poultry (duck and pigeon), and wildlife (pangolin, tiger, and deer), and investigated the co-expression of ACE2 and TMPRSS2. Furthermore, cross-species analysis of the lung cell atlas of the studied mammals, reptiles, and birds reveals core developmental programs, critical connectomes, and conserved regulatory circuits among these evolutionarily distant species. Overall, our work provides a compendium of gene expression profiles for non-model animals, which could be employed to identify potential SARS-CoV-2 target cells and putative zoonotic reservoirs

    Sparse Overlap Cross-Platform Recommendation Via Adaptive Similarity Structure Regularization

    No full text
    People often use multiple platforms to fulfill their different information needs, which has opened opportunities for research on the cross-platform recommendation. Existing cross-platform recommendation works either assume no overlapping users on different platforms or require enough overlapping users to reach a good performance. None of them pays attention to the sparse overlap problem, that is, the number of observed overlapping users of different platforms is very small. In this paper, we propose a cross-platform recommendation framework termed Adaptive Similarity Structure Regularization Through Connector (AdaSTC), which adaptively learns the user similarity structure on different platforms and further uses it to regularize the modeling process of user preference. Experiments conducted on two real-world datasets demonstrate that AdaSTC significantly outperforms the state-of-the-art methods in the sparse overlap situation

    Excitation Wavelength and Intensity-Dependent Multiexciton Dynamics in CsPbBr3 Nanocrystals

    No full text
    CsPbBr3 has attracted great attention due to unique optical properties. The understanding of the multiexciton process is crucial for improving the performance of the photoelectric devices based on CsPbBr3 nanocrystals. In this paper, the ultrafast dynamics of CsPbBr3 nanocrystals is investigated by using femtosecond transient absorption spectroscopy. It is found that Auger recombination lifetime increases with the decrease of the excitation intensity, while the trend is opposite for the hot-exciton cooling time. The time of the hot-carriers cooling to the band edge is increased when the excitation energy is increased from 2.82 eV (440 nm) to 3.82 eV (325 nm). The lifetime of the Auger recombination reaches the value of 126 ps with the excitation wavelength of 440 nm. The recombination lifetime of the single exciton is about 7 ns in CsPbBr3 nanocrystals determined by nanosecond time-resolved photoluminescence spectroscopy. The exciton binding energy is 44 meV for CsPbBr3 nanocrystals measured by the temperature-dependent steady-state photoluminescence spectroscopy. These findings provide a favorable insight into applications such as solar cells and light-emitting devices based on CsPbBr3 nanocrystals

    A Low-overhead Fault-aware Deflection Routing Algorithm for 3D Network-on-Chip

    No full text
    Abstract—This paper proposes a low-overhead fault-tolerant deflection routing algorithm, which uses a layer routing table and two TSV state vectors to make efficient routing decision to avoid both TSV and horizontal link faults, for 3D NoC. The proposed switch is implemented in hardware with TSMC 65nm technology, which can achieve 250MHz. Compared with a reinforcement-learning-based fault-tolerant deflection switch with a global routing table, the proposed switch occupies 40 % less area and consumes 49 % less power consumption. Simulation results demonstrate that the proposed switch has 5 % less average packet latency than the switch with the global routing table under real application workloads and with only 5 % performance degradation under synthetic workloads in the presence of 10 % link faults. Keywords-3D NoC; deflection routing; fault-tolerance I

    Laser Welding Process Parameters Optimization Using Variable-Fidelity Metamodel and NSGA-II

    No full text
    An optimization methodology based on variable-fidelity (VF) metamodels and nondominated sorting genetic algorithm II (NSGA-II) for laser bead-on-plate welding of stainless steel 316L is presented. The relationships between input process parameters (laser power, welding speed and laser focal position) and output responses (weld width and weld depth) are constructed by VF metamodels. In VF metamodels, the information from two levels fidelity models are integrated, in which the low-fidelity model (LF) is finite element simulation model that is used to capture the general trend of the metamodels, and high-fidelity (HF) model which from physical experiments is used to ensure the accuracy of metamodels. The accuracy of the VF metamodel is verified by actual experiments. To slove the optimization problem, NSGA-II is used to search for multi-objective Pareto optimal solutions. The results of verification experiments show that the obtained optimal parameters are effective and reliable
    corecore