388 research outputs found

    Exciting spiral arms in protoplanetary discs from flybys

    Full text link
    Spiral arms are observed in numerous protoplanetary discs. These spiral arms can be excited by companions, either on bound or unbound orbits. We simulate a scenario where an unbound perturber, i.e. a flyby, excites spiral arms during a periastron passage. We run three-dimensional hydrodynamical simulations of a parabolic flyby encountering a gaseous protoplanetary disc. The perturber mass ranges from 10MJ10\, \rm M_J to 1M1\, \rm M_{\odot}. The perturber excites a two-armed spiral structure, with a more prominent spiral feature for higher mass perturbers. The two arms evolve over time, eventually winding up, consistent with previous works. We focus on analysing the pattern speed and pitch angle of these spirals during the whole process. The initial pattern speed of the two arms are close to the angular velocity of the perturber at periastron, and then it decreases over time. The pitch angle also decreases over time as the spiral winds up. The spirals disappear after several local orbital times. An inclined prograde orbit flyby induces similar disc substructures as a coplanar flyby. A solar-mass flyby event causes increased eccentricity growth in the protoplanetary disc, leading to an eccentric disc structure which dampens over time. The spirals' morphology and the disc eccentricity can be used to search for potential unbound stars or planets around discs where a flyby is suspected. Future disc observations at high resolution and dedicated surveys will help to constrain the frequency of such stellar encounters in nearby star-forming regions.Comment: 17 pages, 18 figures, accepted to MNRA

    Large-Scale Gravitational Instability and Star Formation in the Large Magellanic Cloud

    Full text link
    Large-scale star formation in disk galaxies is hypothesized to be driven by global gravitational instability. The observed gas surface density is commonly used to compute the strength of gravitational instability, but according to this criterion star formation often appears to occur in gravitationally stable regions. One possible reason is that the stellar contribution to the instability has been neglected. We have examined the gravitational instability of the Large Magellanic Cloud (LMC) considering the gas alone, and considering the combination of collisional gas and collisionless stars. We compare the gravitationally unstable regions with the on-going star formation revealed by Spitzer observations of young stellar objects. Although only 62% of the massive young stellar object candidates are in regions where the gas alone is unstable, some 85% lie in regions unstable due to the combination of gas and stars. The combined stability analysis better describes where star formation occurs. In agreement with other observations and numerical models, a small fraction of the star formation occurs in regions with gravitational stability parameter Q > 1. We further measure the dependence of the star formation timescale on the strength of gravitational instability, and quantitatively compare it to the exponential dependence expected from numerical simulations.Comment: Accepted for publication in ApJ, 10 pages, 5 figure

    Calculation of the Coherent Synchrotron Radiation Impedance from a Wiggler

    Full text link
    Most studies of Coherent Synchrotron Radiation (CSR) have only considered the radiation from independent dipole magnets. However, in the damping rings of future linear colliders, a large fraction of the radiation power will be emitted in damping wigglers. In this paper, the longitudinal wakefield and impedance due to CSR in a wiggler are derived in the limit of a large wiggler parameter KK. After an appropriate scaling, the results can be expressed in terms of universal functions, which are independent of KK. Analytical asymptotic results are obtained for the wakefield in the limit of large and small distances, and for the impedance in the limit of small and high frequencies.Comment: 10 pages, 8 figure

    Feasibility of Sentinel Node Biopsy in Head and Neck Melanoma Using a Hybrid Radioactive and Fluorescent Tracer

    Get PDF
    This study was designed to examine the feasibility of combining lymphoscintigraphy and intraoperative sentinel node identification in patients with head and neck melanoma by using a hybrid protein colloid that is both radioactive and fluorescent. Eleven patients scheduled for sentinel node biopsy in the head and neck region were studied. Approximately 5 h before surgery, the hybrid nanocolloid labeled with indocyanine green (ICG) and technetium-99m ((99m)Tc) was injected intradermally in four deposits around the scar of the primary melanoma excision. Subsequent lymphoscintigraphy and single photon emission computed tomography with computed tomography (SPECT/CT) were performed to identify the sentinel nodes preoperatively. In the operating room, patent blue dye was injected in 7 of the 11 patients. Intraoperatively, sentinel nodes were acoustically localized with a gamma ray detection probe and visualized by using patent blue dye and/or fluorescence-based tracing with a dedicated near-infrared light camera. A portable gamma camera was used before and after sentinel node excision to confirm excision of all sentinel nodes. A total of 27 sentinel nodes were preoperatively identified on the lymphoscintigraphy and SPECT/CT images. All sentinel nodes could be localized intraoperatively. In the seven patients in whom blue dye was used, 43% of the sentinel nodes stained blue, whereas all were fluorescent. The portable gamma camera identified additional sentinel nodes in two patients. Ex vivo, all radioactive lymph nodes were fluorescent and vice versa, indicating the stability of the hybrid tracer. ICG-(99m)Tc-nanocolloid allows for preoperative sentinel node visualization and concomitant intraoperative radio- and fluorescence guidance to the same sentinel nodes in head and neck melanoma patient

    Optical coherence tomography-based contact indentation for diaphragm mechanics in a mouse model of transforming growth factor alpha induced lung disease

    Get PDF
    This study tested the utility of optical coherence tomography (OCT)-based indentation to assess mechanical properties of respiratory tissues in disease. Using OCT-based indentation, the elastic modulus of mouse diaphragm was measured from changes in diaphragm thickness in response to an applied force provided by an indenter. We used a transgenic mouse model of chronic lung disease induced by the overexpression of transforming growth factor-alpha (TGF-a), established by the presence of pleural and peribronchial fibrosis and impaired lung mechanics determined by the forced oscillation technique and plethysmography. Diaphragm elastic modulus assessed by OCT-based indentation was reduced by TGF-a at both left and right lateral locations (p < 0.05). Diaphragm elastic modulus at left and right lateral locations were correlated within mice (r = 0.67, p < 0.01) suggesting that measurements were representative of tissue beyond the indenter field. Co-localised images of diaphragm after TGF-a overexpression revealed a layered fibrotic appearance. Maximum diaphragm force in conventional organ bath studies was also reduced by TGF-a overexpression (p < 0.01). Results show that OCT-based indentation provided clear delineation of diseased diaphragm, and together with organ bath assessment, provides new evidence suggesting that TGF-a overexpression produces impairment in diaphragm function and, therefore, an increase in the work of breathing in chronic lung disease

    Genome-Wide Gene Expression Analysis Implicates the Immune Response and Lymphangiogenesis in the Pathogenesis of Fetal Chylothorax

    Get PDF
    Fetal chylothorax (FC) is a rare condition characterized by lymphocyte-rich pleural effusion. Although its pathogenesis remains elusive, it may involve inflammation, since there are increased concentrations of proinflammatory mediators in pleural fluids. Only a few hereditary lymphedema-associated gene loci, e.g. VEGFR3, ITGA9 and PTPN11, were detected in human fetuses with this condition; these cases had a poorer prognosis, due to defective lymphangiogenesis. In the present study, genome-wide gene expression analysis was conducted, comparing pleural and ascitic fluids in three hydropic fetuses, one with and two without the ITGA9 mutation. One fetus (the index case), from a dizygotic pregnancy (the cotwin was unaffected), received antenatal OK-432 pleurodesis and survived beyond the neonatal stage, despite having the ITGA9 mutation. Genes and pathways involved in the immune response were universally up-regulated in fetal pleural fluids compared to those in ascitic fluids. Furthermore, genes involved in the lymphangiogenesis pathway were down-regulated in fetal pleural fluids (compared to ascitic fluid), but following OK-432 pleurodesis, they were up-regulated. Expression of ITGA9 was concordant with overall trends of lymphangiogenesis. In conclusion, we inferred that both the immune response and lymphangiogenesis were implicated in the pathogenesis of fetal chylothorax. Furthermore, genome-wide gene expression microarray analysis may facilitate personalized medicine by selecting the most appropriate treatment, according to the specific circumstances of the patient, for this rare, but heterogeneous disease

    Pulmonary Tuberculosis and Delay in Anti-Tuberculous Treatment Are Important Risk Factors for Chronic Obstructive Pulmonary Disease

    Get PDF
    OBJECTIVE: Tuberculosis (TB) remains the leading cause of death among infectious diseases worldwide. It has been suggested as an important risk factor of chronic obstructive pulmonary disease (COPD), which is also a major cause of morbidity and mortality. This study investigated the impact of pulmonary TB and anti-TB treatment on the risk of developing COPD. DESIGN, SETTING, AND PARTICIPANTS: This cohort study used the National Health Insurance Database of Taiwan, particularly the Longitudinal Health Insurance Database 2005 to obtain 3,176 pulmonary TB cases and 15,880 control subjects matched in age, sex, and timing of entering the database. MAIN OUTCOME MEASURES: Hazard ratios of potential risk factors of COPD, especially pulmonary TB and anti-TB treatment. RESULTS: The mean age of pulmonary TB cases was 51.9±19.2. The interval between the initial study date and commencement of anti-TB treatment (delay in anti-TB treatment) was 75.8±65.4 days. Independent risk factors for developing COPD were age, male, low income, and history of pulmonary TB (hazard ratio 2.054 [1.768-2.387]), while diabetes mellitus was protective. The impact of TB persisted for six years after TB diagnosis and was significant in women and subjects aged >70 years. Among TB patients, delay in anti-TB treatment had a dose-response relationship with the risk of developing COPD. CONCLUSIONS: Some cases of COPD may be preventable by controlling the TB epidemic, early TB diagnosis, and prompt initiation of appropriate anti-TB treatment. Follow-up care and early intervention for COPD may be necessary for treated TB patients

    Calmodulin is responsible for Ca2+-dependent regulation of TRPA1 channels

    Get PDF
    TRPA1 is a Ca2+-permeable ion channel involved in many sensory disorders such as pain, itch and neuropathy. Notably, the function of TRPA1 depends on Ca2+, with low Ca2+ potentiating and high Ca2+ inactivating TRPA1. However, it remains unknown how Ca2+ exerts such contrasting effects. Here, we show that Ca2+ regulates TRPA1 through calmodulin, which binds to TRPA1 in a Ca2+-dependent manner. Calmodulin binding enhanced TRPA1 sensitivity and Ca2+-evoked potentiation of TRPA1 at low Ca2+, but inhibited TRPA1 sensitivity and promoted TRPA1 desensitization at high Ca2+. Ca2+-dependent potentiation and inactivation of TRPA1 were selectively prevented by disrupting the interaction of the carboxy-lobe of calmodulin with a calmodulin-binding domain in the C-terminus of TRPA1. Calmodulin is thus a critical Ca2+ sensor enabling TRPA1 to respond to diverse Ca2+ signals distinctly

    Production of Inactivated Influenza H5N1 Vaccines from MDCK Cells in Serum-Free Medium

    Get PDF
    BACKGROUND: Highly pathogenic influenza viruses pose a constant threat which could lead to a global pandemic. Vaccination remains the principal measure to reduce morbidity and mortality from such pandemics. The availability and surging demand for pandemic vaccines needs to be addressed in the preparedness plans. This study presents an improved high-yield manufacturing process for the inactivated influenza H5N1 vaccines using Madin-Darby canine kidney (MDCK) cells grown in a serum-free (SF) medium microcarrier cell culture system. PRINCIPAL FINDING: The current study has evaluated the performance of cell adaptation switched from serum-containing (SC) medium to several commercial SF media. The selected SF medium was further evaluated in various bioreactor culture systems for process scale-up evaluation. No significant difference was found in the cell growth in different sizes of bioreactors studied. In the 7.5 L bioreactor runs, the cell concentration reached to 2.3 × 10(6) cells/mL after 5 days. The maximum virus titers of 1024 Hemagglutinin (HA) units/50 µL and 7.1 ± 0.3 × 10(8) pfu/mL were obtained after 3 days infection. The concentration of HA antigen as determined by SRID was found to be 14.1 µg/mL which was higher than those obtained from the SC medium. A mouse immunogenicity study showed that the formalin-inactivated purified SF vaccine candidate formulated with alum adjuvant could induce protective level of virus neutralization titers similar to those obtained from the SC medium. In addition, the H5N1 viruses produced from either SC or SF media showed the same antigenic reactivity with the NIBRG14 standard antisera. CONCLUSIONS: The advantages of this SF cell-based manufacturing process could reduce the animal serum contamination, the cost and lot-to-lot variation of SC medium production. This study provides useful information to manufacturers that are planning to use SF medium for cell-based influenza vaccine production
    corecore