4,958 research outputs found

    CHFR is important for the first wave of ubiquitination at DNA damage sites

    Get PDF
    Protein ubiquitination plays an important role in activating the DNA damage response and maintain-ing genomic stability. In response to DNA double-strand breaks (DSBs), a ubiquitination cascade occurs at DNA lesions. Here, we show that checkpoint with Forkhead-associated (FHA) and RING finger domain protein (CHFR), an E3 ubi-quitin ligase, is recruited to DSBs by poly(ADP-ribose) (PAR). At DSBs, CHFR regulates the first wave of protein ubiquitination. Moreover, CHFR ubiquitinates PAR polymerase 1 (PARP1) and regulates chromatin-associated PARP1 in vivo. Thus, these results demonstrate that CHFR is an important E3 ligase in the early stage of the DNA damage response, which mediates the crosstalk between ubiquitination and poly-ADP-ribosylation

    Two distinct nucleic acid binding surfaces of Cdc5 regulate development

    Get PDF
    Cell division cycle 5 (Cdc5) is a highly conserved nucleic acid binding protein among eukaryotes and plays critical roles in development. Cdc5 can simultaneously bind to DNA and RNA by its N- terminal DNA-binding domain (DBD), but molecular mechanisms describing its nucleic acid recognition and the regulation of development through its nucleic acid binding remain unclear. Herein, we present a crystal structure of the N-terminal DBD of MoCdc5 (MoCdc5-DBD) from the rice blast fungus Magnaporthe oryzae. Residue K100 of MoCdc5 is on the periphery of a positively charged groove that is formed by K42, K45, R47, and N92 and is evolutionally conserved. Mutation of K100 significantly reduces the affinity of MoCdc5-DBD to a Cdc5- binding element but not to a conventional myeloblastosis (Myb) domain-binding element, suggesting that K100 is a key residue of the high binding affinity to Cdc5-binding element. Another conserved residue (R31) is located close to the U6 RNA in the structure of the spliceosome, and its mutation dramatically reduces the binding capacity of MoCdc5-DBD for U6 RNA. Importantly, mutations in these key residues, including R31, K42, and K100 in AtCDC5, an Arabidopsis thaliana ortholog of MoCdc5, greatly impair the functions of AtCDC5, resulting in pleiotropic development defects and reduced levels of primary microRNA transcripts. Taken together, our findings suggest that Cdc5-DBD binds nucleic acids with two distinct binding surfaces, one for DNA and another for RNA, which together contribute to establishing the regulation mechanism of Cdc5 on development through nucleic acid binding

    Diverse and strain-specific metabolites patterns induced by fungal endophytes in grape cells of different varieties

    Get PDF
    The potential for endophytes to initiate changes in host secondary metabolism has been well documented. However, the mechanisms underlying endophyte-plant metabolic interactions are still poorly understood. Here, we analysed the effects of fungal endophytes on the metabolite profiles of grape cells from two cultivars: 'Cabernet Sauvignon' (CS) and 'Rose honey' (RH). Our results clearly showed that co-culture with endophytic fungi greatly modified the metabolic profiles in grape cells of both varieties. Treatments with endophytic fungal strains caused the numbers of detected metabolites to vary from 10 to 19 in CS cells and from 8 to 14 in RH cells. In addition, 5 metabolites were detected in all CS cell samples, while 4 metabolites were detected in all RH cell samples. Some endophytic fungal strains could even introduce novel metabolites into the co-cultured grape cells. The metabolic profiles of grape leaves shaped by endophytic fungi exhibited host selectivity and fungal strain specificity. In this assay, the fungal strains RH32 (Alternaria sp.) and MDR36 (Colletotrichum sp.) triggered an increased response of the detected metabolites, including the greatest increase in the metabolite contents in grape cells of both cultivars. No obvious effects in terms of metabolite numbers and contents in grape cells when co-cultured with fungal strains RH7 (Epicoccum sp.) and RH48 (Colletotrichum sp.) were observed. The results of this experiment suggest that endophytic fungi could be used to control the metabolic profiles of grapes and thus increase grape quality

    Two-Dimensional Golay Complementary Array Sets With Arbitrary Lengths for Omnidirectional MIMO Transmission

    Get PDF
    This paper presents a coding approach for achieving omnidirectional transmission of certain common signals in massive multi-input multi-output (MIMO) networks such that the received power at any direction in a cell remains constant for any given distance. Specifically, two-dimensional (2D) Golay complementary array set (GCAS) can be used to design the massive MIMO precoding matrix so as to achieve omnidirectional transmission due to its complementary autocorrelation property. In this paper, novel constructions of new 2D GCASs with arbitrary array lengths are proposed. Our key idea is to carefully truncate the columns of certain larger arrays generated by 2D generalized Boolean functions. Finally, the power radiation patterns and numerical results are provided to verify the omnidirectional property of the GCAS-based precoding. The error performances of the proposed precoding scheme are presented to validate its superiority over the existing alternatives

    Changes in sugars in organs of Phalaenopsis florets during different flowering stages of intact plant inflorescences

    Get PDF
    Phalaenopsis flowers possess extraordinary longevity. However, the changes of sugars, including glucose, fructose and sucrose, in organs of floret during different flowering stages of inflorescences attached to a plant have not been reported. To accomplish this, the sugars level in different floret organs were studied at 4 different stages (1. half open, 2. bloom 1 month, 3. bloom 2 months, and 4. wilting). Glucose and fructose were the major soluble sugars in the sepal, petal, labellum, pedicel, and remainder (including the column, anther cap, pollinia, and stigma) of a floret, but their levels decreased from stages 1 to 4. However, the amount of sucrose increased significantly at stage 4 in the sepal, petal, pedicel, and remainder, with the exception that the labellum remained constant throughout all stages. These results demonstrate that glucose and fructose are the major solutes that contribute to floret opening and blooming, and sucrose is salvaged and exported before floret senescence for opening other florets on the same inflorescence. Meanwhile, labellum possesses different sugar metabolism from other organs of Phalaenopsis floret
    corecore