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INTRODUCTION
Phalaenopsis flowers are popular worldwide as they
feature a variety of shapes, sizes, colors, and have a
long life, reaching up to 3 months (Halevy et al.,
1996). Flowers require energy and turgor pressure for
opening and blooming. Sugars are the primary energy
source in plants (Gibson, 2004). Sugars also act as
osmoticum to reduce water potential and provide
turgor pressure for flower opening and blooming (Shu
et al., 2010). To date, few studies have examined the
changes in endogenous sugars in the Phalaenopsis
flower during different flowering stages.

Among the soluble sugars, sucrose is the most
frequently used carbon source in cut flowers, such as
Gerbera jamesonil (Wani et al., 2012), Dendrobium
(Ratchanee et al., 2013), and Lilium (Majidian et al.,
2014). In cut Dendrobium inflorescences, sucrose
feeding had no effect on the sugar concentrations in
the tepals of open flowers, whereas it increased the
sugar concentrations in the column and labellum

(Ratchanee et al., 2013). These results imply that
flower organs differ in terms of their sucrose
metabolism. Trivellini et al. (2011) indicated that
sugar concentrations in Hibiscus rosa-sinensis L.
flowers, an ephemeral flower that opens and wilts
within 1 day, exhibit a multifarious spatiotemporal
partition during development and senescence.

The Phalaenopsis floret structure consists of a sepal,
petal, labellum, column, anther cap, pollinia, stigma,
and pedicle, which connects the floret to the flower
stalk (O’Neill et al., 1993). Because the column,
anther cap, pollinia, and stigma cannot be easily and
quickly dissected,  they were collected and
denominated as the “remainder” in this study.
Moreover, the floret phenotype development was
divided into the following stages: (1) half open, (2)
bloom 1 month, (3) bloom 2 months, and (4) wilting
(Fig. 1). This study offers insights as to how the
transitional changes of sugars within the various
organs of a floret during different flowering stages on
the inflorescences of intact plants.
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ABSTRACT
Phalaenopsis flowers possess extraordinary longevity. However, the changes of sugars, including glucose,
fructose and sucrose, in organs of floret during different flowering stages of inflorescences attached to a plant
have not been reported. To accomplish this, the sugars level in different floret organs were studied at 4 different
stages (1. half open, 2. bloom 1 month, 3. bloom 2 months, and 4. wilting). Glucose and fructose were the
major soluble sugars in the sepal, petal, labellum, pedicel, and remainder (including the column, anther cap,
pollinia, and stigma) of a floret, but their levels decreased from stages 1 to 4. However, the amount of sucrose
increased significantly at stage 4 in the sepal, petal, pedicel, and remainder, with the exception that the labellum
remained constant throughout all stages. These results demonstrate that glucose and fructose are the major
solutes that contribute to floret opening and blooming, and sucrose is salvaged and exported before floret
senescence for opening other florets on the same inflorescence. Meanwhile, labellum possesses different sugar
metabolism from other organs of Phalaenopsis floret.
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Glucose, fructose, and sucrose were the major free
soluble sugars in the floral organs of Phalaenopsis.
The highest glucose content found for the sepal, petal,
labellum, remainder, and pedicel were 9.90, 10.82,
10.36, 9.88, and 6.11 mg g-1 fresh weight (FW),
respectively (Fig. 2A). These high values all appeared
at stage 1 and proceeded to exhibit a decreasing trend
until stage 4. Similarly, the highest fructose content
of the sepal, petal, labellum, remainder, and pedicel
(observed at stage 1) were 6.39, 6.93, 5.89, 5.90, and
4.01 mg g-1 FW, respectively (Fig. 2B). These too
exhibited a decreasing trend until stage 4. Meanwhile,
the amount of glucose was always higher than that
of fructose in these organs at all four stages.

Conversely, the sucrose content exhibited a decreasing
trend until stage 3, then increased in stage 4, at which
the highest sucrose contents were 3.45, 3.28, 5.63, and
4.28 mg g-1 FW, respectively, in the sepal, petal,
remainder, and pedicel (Fig. 2C). However, the
sucrose content of the labellum remained constant at
each stage. Moreover, at stage 4, sucrose accounted
for 68%, 70%, 62%, 46%, and 60% of the total sugar

Fig. 1 : Phalaenopsis aphrodite flower
developmental stages

Stage 1, half open (A); stage 2, bloom 1 month (B); stage 3,
bloom 2 months (C); stage 4, wilting (D). Bar  1 cm.

Fig. 2 : Changes in free sugars (mg/g FW) in various organs of Phalaenopsis aphrodite florets during different flowering
stages of intact plant inflorescences.
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Sugars change in Phalaenopsis florets

content (the sum of glucose, fructose, and sucrose)
in the sepal, petal, labellum, remainder, and pedicel,
respectively. Note that sucrose contributed less than
60% only in the remainder.

Fig. 2D shows the total sugar content in different
organs declined gradually from stage 1 to stage 4,
however, the decline rates in the sepal, petal, and
labellum differed from those in the remainder and
pedicel. In particular, compared with the total sugar
content at stage 1, those at stages 2, 3, and 4 were
59%, 37%, and 26% in the sepal; 46%, 27%, and
23% in the petal; 59%, 44%, and 19% in the labellum;
71%, 68%, and 63% in the remainder; and 89%, 75%,
and 55% in the pedicel, respectively. Thus, the
decreasing trends of total sugar in the remainder and
pedicel were less significant than those in the other
organs.

All values are presented as the means  SE of six
individual florets. The different capital letters show
statistically significant differences according to least
significant difference (LSD) test (P  0.05) between
the different stages of the same organ. The different
lowercase letters show statistically significant
differences according to LSD test (P  0.05) between
the different organs in the same stage.

Although a dramatic decrease in sugar concentration
during flower senescence is a universal phenomenon,
various species, including cultivars, undergo different
changes. In the senescence flower of Dianthus, there
is a reducing sugar decline in D. chinensis; however,
reducing sugars remained almost constant from
flower opening to senescence in D.  barbatus
(Dar et al., 2015). In the corolla of Digitalis
purpurea, the glucose content declines more rapidly
than the fructose content, resulting in fructose being
the major reducing sugar during senescence;
meanwhile, sucrose cannot be detected in the flowers
(Stead & Moore, 1977). Conversely, in cut flowers
of Lilium, nearly identical amounts of fructose and
glucose are present within the lily tepals during flower
bud development (Majidian et al., 2014). Figure 2
shows the glucose, fructose, and total sugar contents
all decreased from stage 1 to stage 4, and the average
level of glucose was always higher than that of
fructose in various floral organs of Phalaenopsis.

In contrast  to hexoses, the sucrose content
significantly increased 7.3-, 8.9-, 2.6-, and 1.7-fold
from stage 3 to stage 4 in the sepal, petal, remainder,

and pedicel, respectively. However, the content
remained constant in the labellum at all four stages.
Moreover, at stage 4, sucrose was the major sugar in
all organs, accounting for > 60% of the total sugar
content, except in the remainder, wherein accounted
only for 46%. Based on these results, labellum and
remainder possess discrepant sucrose metabolisms,
and the increase in sucrose contents in the sepal and
petal may act as a crucial indicator in the floret
senescence of Phalaenopsis. In fact, sucrose content
also significantly increases in the wilting petals of
H. rosa-sinensis (Trivellini et al., 2011). Bieleski
(1995) demonstrated that sucrose synthesis occurs
during senescence in the daylily petal, and sucrose is
the principal sugar in phloem exudate. In gladiolus
(Yamane et al., 1993) and Dendrobium (Ketsa &
Wongs-aree, 1995) inflorescence, the wilting floret
remobilizes carbohydrates to younger buds on the
same inflorescence. The structure of the Phalaenopsis
floret is the basis of contact between the sepal, petal,
and labellum with the remainder, which directly
connects to the pedicel. Therefore, it is reasonable to
infer that the sucrose in the sepal and petal during the
wilting stage is transported through the remainder into
the pedicel to salvage the carbon source before floret
senescence, thereby opening other florets on the same
inflorescence.

In conclusion, the present study is the first to report
the spatiotemporal changes in sugars in various organs
of Phalaenopsis florets from the half-open to wilting
stages of intact plant inflorescence. Glucose and
fructose contribute to floret opening; however, sucrose
may be transported to the pedicel before floret
senescence to salvage for opening the other florets on
the same inflorescence. More detailed assessments of
the distinct mechanisms of sucrose metabolism on
various floral organs would offer better insights into
the biochemical aspects used to control the senescence
of florets that are attached to Phalaenopsis
inflorescence.
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