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Abstract—This paper presents a coding approach for achiev-
ing omnidirectional transmission of certain common signals in
massive multi-input multi-output (MIMO) networks such that
the received power at any direction in a cell remains constant
for any given distance. Specifically, two-dimensional (2D) Golay
complementary array set (GCAS) can be used to design the
massive MIMO precoding matrix so as to achieve omnidirectional
transmission due to its complementary autocorrelation property.
In this paper, novel constructions of new 2D GCASs with
arbitrary array lengths are proposed. Our key idea is to carefully
truncate the columns of certain larger arrays generated by
2D generalized Boolean functions. Finally, the power radiation
patterns and numerical results are provided to verify the om-
nidirectional property of the GCAS-based precoding. The error
performances of the proposed precoding scheme are presented
to validate its superiority over the existing alternatives.

Index Terms—Generalized Boolean function (GBF), Golay
complementary array pair (GCAP), Golay complementary array
set (GCAS), omnidirectional precoding (OP), uniform rectangu-
lar array (URA).

I. INTRODUCTION

Complementary pairs/sets of sequences have attracted a
sustained research interest owing to their zero aperiodic corre-
lation sums properties. To be specific, a Golay complementary
pair (GCP) refers to a pair of equal-length sequences whose
summation of aperiodic autocorrelations is zero except at
the zero time-shift [1]. Such a concept was extended to
Golay complementary set (GCS) with constituent sequences
of more than 2 by Tseng and Liu in [2]. Furthermore, a
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maximum collection of GCSs is called a set of complete
complementary code (CCC) [3] if any two different GCSs
have zero aperiodic cross-correlation sums for all time-shifts.
In the literature, GCSs and CCCs have been widely used
for radar sensing [4], channel estimation [5], precoding for
massive multi-input multi-output (MIMO) [6], peak-to-average
power ratio (PAPR) reduction in orthogonal frequency division
multiplexing (OFDM) [7]–[13], interference-free multicarrier
code division multiple access [14]–[17], and many other
applications [18], [19].

Recently, there is a surge of research attention to study two-
dimensional (2D) Golay complementary array sets (GCASs)
[18]-[23], each having zero aperiodic autocorrelation sums
property for two directions of shifts (compared to conventional
GCSs and CCCs with time-shifts only). An important appli-
cation of the 2D GCASs is for omnidirectional transmission
in MIMO communication systems with a uniform rectangular
array (URA) configuration [20], [21]. In massive MIMO
systems, some common messages (e.g., reference signals, syn-
chronization signals, control signals, etc.) need to be power-
uniformly broadcasted to all the angles within the whole cell.
In this paper, we consider space-time block code (STBC) for
the harvesting of the diversity gain. At the base station (BS),
the STBC encoded symbols are assigned to several streams
and then mapped onto the antenna arrays in URA by certain
2D GCASs assisted precoding matrices to achieve uniform
power radiation at any angle.

On the other hand, since a large number of antennas are
considered in massive MIMO systems, a huge pilot overhead
may be needed to acquire the channel state information (CSI).
As pointed out in [22], this can be alleviated by omnidirec-
tional precoding (OP) based transmission. For uniform linear
arrays (ULAs), Zadoff-Chu (ZC) sequences were adopted
to satisfy the requirements of the omnidirectional property.
However, [22] only considered the omnidirectional transmis-
sion in certain directions. Later in [6], GCSs and CCCs
based OP matrices were proposed to meet the requirement
of omnidirectional transmission across all directions.

In [20], [21], [23], [24], 2D GCASs were employed for
precoding matrices in URAs by applying interleaving and
Kronecker-product to existing 1D sequences or 2D arrays. As
a result, the array sizes of 2D GCASs are only feasible for
certain lengths. A construction of 2D GCASs of array size
pn × pm was proposed in [25] by using permutation ployno-
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mials (PPs) functions and 2-level autocorrelation sequences,
where p is a prime number, m,n are two positive integers, and
p,m, n > 0. Furthermore, a unifying construction framework
for 2D GCASs was developed in [26] by a multivariate poly-
nomial matrix from certain seed para-unitary (PU) matrices. In
[27], [28], Pai and Chen proposed direct constructions of 2D
Golay complementary array pairs (GCAPs) and GCASs with
array size 2n × 2m from 2D generliazed Boolean functions
(GBFs) [29] where n,m are integers and n,m ≥ 2. 2D GCAP
can be regarded as a case of 2D GCAS when the set size
is equal to 2. Moreover, Pai et al. [30] proposed a direct
construction of 2D CCCs with array size 2n×2m, which have
ideal autocorrelations and cross-correlations. Later, Liu et al.
[31] proposed a construction of GCASs with array size pn×pm
by using 2D multivariable functions, where p is a prime
number, n,m are integers, and n,m ≥ 2. Based on [27], [32]
developed a direct construction of GCASs with set size 4 and
array size 2n×(2m−1+2v) by using 2D GBFs, where n,m, v
are positive number with n,m ≥ 2, and 0 ≤ v ≤ m− 1.

The aforementioned research efforts are generally driven
by the need of highly flexible array sizes of 2D GCASs.
Motivated by this, we aim for generating new GCASs with
arbitrary array lengths. The main contributions of this work
are summarized as follows.

1) We present direct constructions of 2D GCASs with more
flexible array sizes based on 2D GBFs. Our key idea
is to properly truncate certain columns of larger arrays
generated from 2D GBFs. Thus, our constructed GCASs
can be applied to URAs with various array sizes. Nu-
merical results indicate that the proposed 2D GCASs
are good candidates for precoding matrices to attain
omnidirectional transmission.

2) We compare the parameters of existing 2D GCASs with
our proposed ones in Table I. It can be observed that
by setting proper values of dα,s and v, the array size
of the proposed GCASs reduces to the form 2n × 2m

which is the same as the array sizes of GCASs from [27],
[28], [30]. Besides, our proposed GCASs can include
the GCASs provided in [32] as a special case. Note that
the proposed GCASs can be directly generated from 2D
GBFs without the requirements of any specific sequences
or tedious sequence operations.

The remainder of this paper is defined as follows. Section
II discusses notations, definitions, system models, and the
omnidirectional transmission in MIMO systems. Section III
describes our proposed constructions of 2D GCASs. Section
IV shows the power radiation pattern and bit error rate (BER)
performance based on our proposed 2D GCASs precoding.
Finally, Section V presents the conclusion.

II. PRELIMINARIES AND DEFINITIONS

A. Notations

Throughout this paper, we present the notations in the
following:
• (a)i refers to the i-th element of the vector a.
• (A)i,j denotes the (i, j)-th element of the array A.
• (·)H refers to the conjugate transpose.

• diag(A) refers to the column vector composed of the
main diagonal of A.

• (·)∗ refers to the complex conjugation of an element.
• (·)T refers to the transpose.
• vec(·) express stacking one column of the matrix into one

another column.
• 1 is a vector whose elements are all 1.
• Let ξ = e2π

√
−1/q .

• Throughout this paper, q is an even number.
Let X and Y be two arrays of size L1×L2. Then X and Y
can be stated as

X = (Xg,i), Y = (Yg,i), (1)

where g = 0, 1, · · · , L1 − 1 and i = 0, 1, · · · , L2 − 1.
Definition 1: Given two arrays X and Y of size L1 × L2,

the 2D aperiodic cross-correlation function (AACF) is defined
by
ρ (X,Y;u1, u2)

=



L1−1−u1∑
g=0

L2−1−u2∑
i=0

Yg+u1,i+u2
X∗g,i, 0 ≤ u1 < L1,

0 ≤ u2 < L2;
L1−1−u1∑
g=0

L2−1−u2∑
i=0

Yg+u1,iX
∗
g,i−u2

, 0 < u1 < L1,

−L2 < u2 < 0;
L1−1−u1∑
g=0

L2−1−u2∑
i=0

Yg,iX
∗
g−u1,i−u2

,−L1 < u1 < 0,

−L2 < u2 < 0;
L1−1+u1∑
g=0

L2−1−u2∑
i=0

Yg,i+u2X
∗
g−u1,i

,−L1 < u1 < 0,

0 < u2 < L2.
(2)

When X = Y , then it is called 2D aperiodic autocorrelation
function (AACF) and denoted by ρ(X;u1, u2). If taking L1 =
1, two 2D arrays X and Y are degraded as a 1-D sequence
X = Xi for i = 0, 1, · · · , L2 − 1 and Y = Yi for i =
0, 1, · · · , L2 − 1, respectively. Then the 1-D AACF of 1-D
sequence X is related by

ρ(X;u) =


L2−1−u∑
i=0

Xi+uX
∗
i , 0 ≤ u ≤ L2 − 1;

L2−1+u∑
i=0

XiX
∗
i−u, −L2 + 1 ≤ u < 0.

(3)

In this paper, q-PSK modulation is employed. Thus, x and y
denote q-ary arrays and (1) is expressed as

X = (Xg,i) = (ξxg,i) = ξx;

Y = (Yg,i) = (ξyg,i) = ξy,
(4)

where x = (xg,i),y = (yg,i), and xg,i, yg,i ∈ Zq =
{0, 1, · · · , q − 1} for 0 ≤ g < L1, 0 ≤ i < L2.

Definition 2: Let the array set G = {X0,X1, · · · ,XN−1}
where each array in set G is of size L1 ×L2. If the array set
G satisfies
N−1∑
k=0

ρ(Xk;u1, u2) =

{
NL1L2, u1 = u2 = 0;

0, u1 6= 0 or u2 6= 0,
(5)
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TABLE I
A COMPARISON OF CONSTRUCTIONS FOR 2D GCASS

Construction Parameters Approaches
[26, Th. 5] (N,Nn, Nm), N, n,m > 0 Seed PU matrices
[26, Th. 7] (2k, 2kn, 2km), n,m, k > 0
[25, Th. 4] (p, pn, pm), prime p, n,m > 0 PPs and 2-level

autocorrelation sequences[25, Th. 6] (pk, pkn, pkm), prime p, k, n,m > 0

[31, Th. 1] (pk11 pk22 , pn1 , p
m
2 ), primes p1, p2 2D multivariable functions

[31, Th. 2] (pk, pn, pm), prime p, n+m ≥ k > 0

[27], [28], [30] (2k, 2n, 2m), n,m ≥ k > 0, and k > 0

2D GBFs
[32] (4, 2n, 2m−1 + 2v), n,m ≥ 2, and k > 0

Th. 1 (2k+1, 2n, 2m−1 +
∑k−1
α=1 dα2

m−k+α−1 + d02v),
k < m, 0 ≤ v ≤ m− k, dα ∈ {0, 1}

Th. 2 (2k+1, 2n, 2m−1 +
∑k−1
α=1 dα2

π1(m−k+α)−1 + d02v),
k < m, 0 ≤ v ≤ m− k, dα ∈ {0, 1}

the set G is called the Golay complementary array set of set
size N denoted by (N,L1, L2)-GCAS where L2 is defined as
the length of the GCAS. When N = 2, the 2D GCAS G is
reduced to a 2D Golay complementary array pair (GCAP).

B. Generalized Boolean Functions

A 2D generalized Boolean function (GBF) f in n+m binary
variables y1, y2, · · · , yn,
x1, x2, · · · , xm, is a function mapping: Zn2×Zm2 → Zq , where
xi, yg ∈ {0, 1} for i = 1, 2, · · · ,m and g = 1, 2, · · · , n. A
monomial of degree r is given by any product of r distinct
variables among y1, y2, · · · , yn, x1, x2, · · · , xm. For instance,
x1x3y1y2 is a monomial of degree 4. Next, the variables
z1, z2, · · · , zn+m are defined as

zl =

{
yl if 1 ≤ l ≤ n;
xl−n if n < l ≤ m+ n,

(6)

which are useful for our proposed constructions. For a 2D
GBF with n+m variables, the 2D Zq-valued array

f =


f0,0 f0,1 · · · f0,2m−1
f1,0 f1,1 · · · f1,2m−1

...
...

. . .
...

f2n−1,0 f2n−1,1 · · · f2n−1,2m−1

 (7)

of size 2n × 2m is given by letting fg,i =
f((g1, g2, · · · , gn), (i1, i2, · · · , im)), where (g1, g2, · · · , gn)
and (i1, i2, · · · , im) are binary vector representations
of integers g =

∑n
h=1 gh2

h−1 and i =
∑n
j=1 ij2

j−1,
respectively.

Example 1: Taking q = 4, n = 2, and m = 3 for example,
the 2D GBF is given as f = 3z5z4 + z2z3 + 2z2. Then the
array f of size 4×8 corresponding to f can be obtained, i.e.,

f =


0 0 0 0 0 0 3 3
0 0 0 2 1 1 3 3
2 3 2 3 2 3 1 2
2 3 2 3 2 3 1 2

 . (8)

The GBF f can be rewritten as f = 3x3x2 + y2x1 + 2y2. In
this paper, we consider the array size 6= 2n × 2m. Hence, we
define the truncated array f (L) corresponding to the 2D GBF
f by ignoring the last 2m − L columns of the corresponding
array f .

Example 2: Following the same notations given in Example
1, the truncated array f (6) is given by

f (6) =


0 0 0 0 0 0
0 0 0 2 1 1
2 3 2 3 2 3
2 3 2 3 2 3

 . (9)

For simplicity, we use f to stand for f (L) when L is known.

C. System Model

Considering downlink transmission from a BS to UEs where
each has one single antenna, we suppose that the number of
antennas at the BS is M = L1 × L2, i.e., the URA consists
of L1 rows and L2 columns. Fig. 1 illustrates the diagram of
data downlink transmission. For an L1×L2 URA, the steering
matrix A(ϕ, θ) at the direction (ϕ, θ) with the (g, i)-th entry
can be expressed as

(A(ϕ, θ))g,i = e−j
2π
λ gdy sinϕ sin θ−j 2π

λ idx sinϕ cos θ,

for g = 0, 1, . . . , L1 − 1, i = 0, 1, . . . , L2 − 1,

θ ∈ [0, 2π], ϕ ∈ [0, π/2],
(10)

where dx and dy denote the vertical antenna and horizontal
antenna inter-element spacings of the URA, respectively, and λ
denotes the carrier wavelength. To enhance the spatial diversity
and communication reliability, the STBC signal transmission
scheme is used. The N ×M STBC is given by

S ,


s0(0) s0(1) · · · s0(M − 1)
s1(0) s1(1) · · · s1(M − 1)

...
...

. . .
...

sN−1(0) sN−1(1) · · · sN−1(M − 1)

 ∈ CN×M

(11)
where CN×M refers to the N -by-M complex space and sn(t)
denotes the (n, t)-th element of the STBC at time instant t for
t = 0, 1, · · · ,M − 1. We define the precoding matrix Wn of
size L1 × L2. The encoded symbols is given by

x(t) = (x0(t), x1(t), · · · , xL1L2−1(t))
T

= vec

(
N−1∑
n=0

Wn · sn(t)

)
, for t = 0, 1, · · · ,M − 1,

(12)
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Fig. 1. Diagram of data transmission through STBC encoding and omnidirectional precoding.

which are transmitted by the L1L2 antennas of the URA. In the
light-of-sight (LOS) channel without multipaths, the received
signal at the direction (ϕ, θ) can be written as

y(t) =

N−1∑
n=0

(
vec(A(ϕ, θ))T vec(Wn)

)
· sn(t) + η(t),

t = 0, . . .,M − 1,
(13)

where η(t) is the additive Gaussian white noise (AWGN) with
zero mean and variance σ2 at time instant t.

D. Omnidirectional Precoding Matrices Based on 2D Arrays

In this subsection, we list two necessary requirements for
the design of OP matrices. Then, we will connect these two
requirements with the conditions of 2D arrays.

Requirement 1 (R1): Omnidirectional transmission.
We consider the MIMO system with URA. Following (13),

the received power E at the angle (ϕ, θ) is represented as

E =

N−1∑
n=0

∣∣[vec(A(ϕ, θ))T vec(Wn)]
∣∣2 . (14)

Therefore, to satisfy the omnidirectional transmission in the
whole cell, (14) must be constant for all ϕ and θ.

Requirement 2 (R2): Equal average power on each antenna.
To enhance the efficiency of the power amplifier, the average

transmission power on all L1 ×L2 antennas is required to be
equal. We define

W = (vec(W0), vec(W1), · · · , vec(WN−1)) , (15)

where the array size of W is L1L2 ×N . Hence, (12) can be
rewritten as

X = (x(0),x(1), · · · ,x(M − 1)) = WS. (16)

Let s(t) be the t-th column of S. Throughout this paper,
we assume E

[
s(t)s(t)

H
]
=IN . The transmitted signal on the

(l1, l2)-th antenna is (Ws)l2L1+l1 . The average power on the
(l1, l2)-th antenna can be expressed as

E
[
|(Ws)l2L1+l1 |2

]
=
(
WE

[
s(t)s(t)

H
]
WH

)
l2L1+l1,l2L1+l1

= (WWH)l2L1+l1,l2L1+l1 .
(17)

Therefore, the condition to guarantee equal power on each
antenna is equivalent to

diag(WWH) = N1. (18)

Next, we will derive two sufficient conditions on the precoding
matrices to fulfill requirements R1 and R2.

Lemma 1: [21] For an L1 × L2 URA, if the precoding
matrices W0,W1, · · · ,WN−1 of size L1 × L2 form an
(N,L1, L2)-GCAS, then the omnidirectional transmission is
achieved.

Lemma 2: For an L1 × L2 URA, if the precoding matrices
W0,W1, · · · ,WN−1 of size L1 × L2 are unimodular, then
the average power on each antenna is equal.

Proof: In order to meet the requirement for equal average
power on each antenna, the precoding matrix W must satisfy
(18). We let wi = vec(Wi), for i = 0, 1, · · · , N − 1. Then,

diag
(
WWH

)
=

(
N−1∑
i=0

|(wi)0|2 ,
N−1∑
i=0

|(wi)1|2 , · · · ,
N−1∑
i=0

|(wi)L1L2−1|
2

)T
= N1

(19)
since we have |(wi)n|2 = 1 for i = 0, 1, · · · , N − 1 and
n = 0, 1, · · · , L1L2 − 1. According to (18), the requirement
(R2) is fulfilled.
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In the sequel, the design of OP matrices
W0,W1, · · · ,WN−1 are based on Lemma 1 and Lemma
2. That is, our goal is to construct unimodular GCASs with
flexible sizes.

III. GCASS WITH FLEXIBLE ARRAY SIZE

In this section, two constructions of 2D GCASs with
arbitrary array lengths based on 2D GBFs will be proposed.
By recalling the function mapping in (6), we present our first
theorem in the following.

Theorem 1: For any integers q, m, n ≥ 2, and k < m, v is
an integer satisfies 0 ≤ v ≤ m−k and let π be a permutation of
{1, 2, · · ·m+ n− k} satisfying {zπ(1), zπ(2), · · · , zπ(v+n)} =
{z1, z2, · · · , zv+n}. The 2D generalized Boolean function can
be written as

f =
q

2

(
m+n−k−1∑

l=1

zπ(l)zπ(l+1)

)
+

m+n∑
s=1

pszs + p0 (20)

where ps ∈ Zq . The array set

G ={
f +

q

2

k∑
α=1

λαzm+n−k+α +
q

2
λk+1zπ(1) : λα ∈ {0, 1}

}
(21)

is a q-ary (2k+1, 2n, 2m−1 +
∑k−1
α=1 dα2

m−k+α−1 + d02
v)-

GCAS where dα ∈ {0, 1}.
Proof: Please see the proof in Appendix A.
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-40

Fig. 2. The summation of autocorrelations of constituent arrays in the GCAS
in Example 3.

Remark 1: The parameter 2m−1 +
∑k−1
α=1 dα2

m−k+α−1 +
d02

v of the proposed GCASs in Theorem 1 can be any
arbitrary length since m, k, v are flexible and dα ∈ {0, 1}. Be-
sides, by setting v = m−k and dα = 1 for α = 0, 1. . . . , k−1
in Theorem 1, the constructed (2k+1, 2n, 2m)-GCASs have the
same array sizes of GCASs from [28].

Example 3: Taking q = 2, m = 6, n = 2, k = 1, and
v = 0, we let π = (1, 2, 3, 4, 5, 6, 7). The generalized Boolean
function is f = z1z2 + z2z3 + z3z4 + z4z5 + z5z6 + z6z7 =
x1x2 + x2x3 + x3x4 + x4x5 + y1y2 + y2x1 by setting pk = 0

for k = 0, 1, . . . ,m+ n. The array set G = {f ,f + x8,f +
y1,f + x8 + y1} is a GCAS of size 4 and the array size is
4 × 33. We let G = {c0, c1, c2, c3} and list the constituent
arrays in Table II as given in Appendix C. Fig. 2 shows the
AACF sum of set G is zero at shift u1 6= 0 or u2 6= 0. Thus,
we can find that array set G is a (4, 4, 33)-GCAS.

Next, we introduce a lemma which illustrates a construction
of (4, 2n, 2m−1 + 2v)-GCAS from 2D GBFs.

Lemma 3: [32, Th. 1] For nonnegative integers m, n, and v
with 0 ≤ v < m−1, let π1 be a permutation of {1, 2, · · · ,m−
1} and π2 be a permutation of {1, 2, · · · , n}. The 2D GBF is
given by

f =
q

2

(m−2∑
k=1

xπ1(k)xπ1(k+1) +

n−1∑
k=1

yπ2(k)yπ2(k+1)

+ xπ1(m−1)xm + xmyπ2(1)

)
+

m∑
l=1

plxl +

n∑
s=1

κsys + p0

(22)
where pl, κs ∈ Zq . Then the array set

G =
{
f ,f +

q

2
xπ1(1),f +

q

2
yπ2(n),f +

q

2
xπ1(1) +

q

2
yπ2(n)

}
is a (4, 2n, 2m−1 + 2v)-GCAS.

Since the set size of the GCAS from Lemma 3 is limited to
4, we propose a general construction of 2D GCASs with more
flexible array sizes and set sizes which can include Lemma 3
as a special case.

Theorem 2: For any integers q, m, n ≥ 2, and k < m,
v is an integer satisfies 0 ≤ v ≤ m − k. Assume that π1
is a permutation of {1, 2, · · ·m} and π2 is a permutation of
{1, 2, · · ·n}. The 2D generalized Boolean function can be
written as

f =
q

2

(
m−k−1∑
l=1

xπ1(l)xπ1(l+1) +

n−1∑
s=1

yπ2(s)yπ2(s+1)

+ xπ1(m)yπ2(n)

)
+

m−k∑
l=1

µlxπ1(l)xπ1(m) +

m∑
l=1

plxk

+

n∑
s=1

κsys + p0

(23)
where µl, pl, κs,∈ Zq . The array set

G =

{
f +

q

2

k−1∑
α=1

λαxπ1(m−k+α)

+
q

2
λkyπ2(1) +

q

2
λk+1xπ1(1) : λα ∈ {0, 1}

} (24)

is a q-ary (2k+1, 2n, 2m−1+
∑k−1
α=1 dα2

π1(m−k+α)−1+d02
v)-

GCAS where dα ∈ {0, 1} if the following three conditions
hold.

(C1) {π1(1), π1(2), · · · , π1(v)} = {1, 2, · · · , v} if v > 0;
(C2) π1(m− k+α) < π1(m− k+α+1) for 1 ≤ α ≤ k− 1

where π1(m) = m;
(C3) For 1 ≤ α ≤ k − 1 and 2 ≤ β ≤ m − k, if π1(β) <

π1(m− k + α), then π1(β − 1) < π1(m− k + α).
Proof: The proof is given in Appendix B.
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Remark 2: Taking σ2(l) = π2(n− l+1) for l = 1, 2, . . . , n
and π1(m − k + α) = m − k + α for α = 1, 2, . . . , k in
Theorem 2, (22) can be represented as

f =
q

2

(
m−k−1∑
k=1

xπ1(k)xπ1(k+1) +

n−1∑
k=1

yσ2(k)yσ2(k+1)

+ xmyσ2(1)

)
+

m−k∑
l=1

µlxπ1(l)xm +

m∑
l=1

plxl

+

n∑
s=1

κsys + p0

(25)

where pl, κs ∈ Zq . We can find that the result of Lemma
3 is a special case of Theorem 2 by simply setting k = 1,
µm−1 = q

2 , and µl = 0 for l = 1, · · · ,m− 2.
Example 4: Taking q = 2, m = 5, n = 2, k = 2, and v = 0,

we let π1 = (1, 2, 4, 3, 5) and π2 = (1, 2). The generalized
Boolean function is f = x1x2+x2x4+y1y2+x5y1 by setting
pl, κs = 0. The array set G is a GCAS of size 8 when the
truncated size L1 = 4 L2 = 21. We let G = {c0, c1, · · · , c7}
and list the constituent arrays in Table III as provided in
Appendix C. Also, their AACF sum is shown as Fig. 3.

0

200

2

400

40

600

20

800

0

1000

0

-20-2

-40

Fig. 3. The summation of autocorrelations of constituent arrays in the GCAS
in Example 4.

IV. SIMULATION RESULTS

In this section, we present the numerical results including
the power radiation pattern and BER performance by using our
proposed 2D GCASs for massive MIMO systems with URA.

A. Power Radiation Pattern

According to (13), the power radiation pattern∑N−1
n=0

∣∣[vec(A(ϕ, θ))T vec(Wn)]
∣∣2 can be obtained.

We first consider the massive MIMO system equipped
with a URA of size 4 × 33, i.e., L1 = 4 and
L2 = 33. We take the GCAS G = {c0, c1, c2, c3}
listed in Table II to generate the precoding matrices
{W0,W1,W2,W3} = {(−1)c0 , (−1)c1 , (−1)c2 , (−1)c3}

(a) GCAS-based precoding.

(b) ZC-based precoding.

(c) Random-matrix-based precoding.

Fig. 4. Power radiation pattern with 4× 33 URA and 4× 4 STBC.

with the omnidirectional property. The power radiation pattern
of the GCAS-based scheme with array size 4×33 is perfectly
omnidirectional as illustrated in Fig 4(a).

For the purpose of comparison, we also show the power
radiation patterns of the precoding matrices based on Zadoff-
Chu sequences and random-matrices whose elements are ran-
domly generated from “+1” and “−1”. The ZC-based precoder
consists of four 4×33 precoding matrices, which are obtained
based on a ZC sequence of length 4 and a ZC sequence
of length 33 [21]. Fig. 4(b) illustrates the power radiation
pattern of the ZC-based precoder. We can find that its power
radiation pattern is not omnidirectional. The random-matrix-
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(a) GCAS-based precoding.

(b) ZC-based precoding.

(c) Random-matrix-based precoding.

Fig. 5. Power radiation pattern with 4× 21 URA and 8× 8 STBC.

based precoder consists of four 4×33 precoding matrices. The
elements in the random-matrix-based precoding matrices are
generated by selecting the elements from {1,−1} with equal
probability. Fig. 4(c) describes the power radiation pattern of
the random matrix-based precoder. We can observe that the
power radiation pattern is not omnidirectional.

Next, we consider the massive MIMO system equipped
with a URA of size 4 × 21, i.e., L1 = 4 and L2 =
21. We use the GCAS G = {c0, c1, · · · , c7} listed in
Table III for the precoding matrix {W0,W1, · · · ,W7} =
{(−1)c0 , (−1)c1 , · · · , (−1)c7}. The power radiation pattern of
the GCAS-based scheme with array size 4 × 21 is described

in Fig. 5(a). The perfect omnidirectional property can be
observed. We also see that the power radiation patterns of the
ZC-based precoder and the random-matrix precoder shown in
Fig. 5(b) and Fig. 5(c) are not omnidirectional. The ZC-based
precoding matrices are obtained by a ZC sequence of length
4 and ZC sequence of 21 [21].

B. Bit Error Rate Performance

In this subsection, we present the BER performance of
our proposed 2D GCAS-based schemes. We first consider the
massive MIMO system equipped with a URA of size 4× 33.
We let N = 4 and then the 4 × 4 orthogonal real STBC be
presented as

S =


s0 −s1 −s2 −s3
s1 s0 s3 −s2
s2 −s3 s0 s1
s3 s2 −s1 s0

 , (26)

where s0, s1, s2, s3 are binary phase shift keying (BPSK)
modulated symbols. According to (13), the signal-to-noise
ratio (SNR) is given by

SNR =

E
[
N−1∑
n=0

∣∣vec(A(ϕ, θ))T vec(Wn)
∣∣2]

σ2
, (27)

where σ2 is the variance of the AWGN and the maximum like-
lihood (ML) decoding is employed here. For each realization,
the elevation and the azimuth angles are uniformly distributed
at random between [0, π/2] and [0, 2π], respectively. For
comparison, the ZC-based precoder and random-matrix-based
precoder are the same as mentioned in Section IV-A. The BER
performances of three different schemes are depicted in Fig. 6.
We can find that the 2D GCAS-based scheme outperform the
others. At BER of 10−4, there are 1.6 dB and 3.6 dB gains over
the ZC-based scheme and the random-matrix-based scheme,
respectively.

-2 0 2 4 6 8 10 12 14

SNR (dB)

10-8

10-6

10-4

10-2

100

B
E

R

GCAS-based precoding (N=4)

ZC-based precoding (N=4)

Random-matrix-based precoding (N=4)

Fig. 6. BER performance of the different schemes for a 4× 33 URA.
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Next, we consider the massive MIMO system equipped with
a URA of size 4×21. We consider 8×8 STBC and the 8×8
orthogonal real STBC is given by

S =



s0 s1 s2 s3 s4 s5 s6 s7
−s1 s0 s3 −s2 s5 −s4 −s7 s6
−s2 −s3 s0 s1 s6 s7 −s4 −s5
−s3 s2 −s1 s0 s7 −s6 s5 −s4
−s4 −s5 −s6 −s7 s0 s1 s2 s3
−s5 s4 −s7 s6 −s1 s0 −s3 s2
−s6 s7 s4 −s5 −s2 s3 s0 −s1
−s7 −s6 s5 −s4 −s3 s2 s1 s0


(28)

where s0, s1, · · · , s7 are BPSK modulated symbols. We also
take the ZC-based precoding and random-matrix-based pre-
coding for comparison. The BER performance comparison for
these three different schemes is depicted in Fig. 7. At BER of
10−4, there are 0.2 dB and 1.8 dB gains over the ZC-based
scheme and the random-matrix-based scheme, respectively.
Besides, the elements of the GCAS-based precoding matrices
in the simulation are all binary values, as demonstrated in
Tables II and III in Appendix C, whereas the elements of the
ZC-based precoding matrices are complex values. Therefore,
the computational complexity in precoding based on our
proposed GCASs can be reduced. As a result, the 2D GCASs
are good candidates as precoding matrices for omnidirectional
transmission in massive MIMO systems.

-2 0 2 4 6 8 10 12 14

SNR (dB)

10-8

10-6

10-4

10-2

100

B
E

R

GCAS-based precoding (N=8)

ZC-based precoding (N=8)

Random-matrix-based precoding (N=8)

Fig. 7. BER performance of the different schemes for a 4× 21 URA.

V. CONCLUSION

In this paper, constructions of 2D GCASs with flexible
array sizes have been proposed in Theorems 1 and 2. Our
constructions can be obtained directly from 2D GBFs without
the aid of special sequences. Besides, our proposed GCASs
have flexible array sizes which can fit more antenna con-
figuration. Furthermore, Theorem 2 can include the results
in [32] as a special case. Simulation results showed that
the omnidirectional transmission can be achieved when the
precoding matrices are based on the proposed GCASs. The

BER performance due to their omnidirectional power radiation
patterns, the ZC-based scheme and random-matix-based have
inferior performances because their power radiation patterns
both are not ideally omnidirectional. Although Theorems 1
and 2 can provide direct constructions of 2D GCASs, the first
dimension has size L1 limited to 2n. Therefore, the future
work includes the extension of constructions of 2D GCASs of
which both dimensions have non-power-of-two sizes.

APPENDIX A
PROOF OF THEOREM 1

Proof: Without loss of generality, we consider L1 = 2n

and L2 = 2m−1 +
∑k−1
α=1 2

m−k+α−1 + 2v . We need to show
that ∑

c∈G

L1−1−u1∑
g=0

L2−1−u2∑
i=0

(
ξcg+u1,i+u2−cg,i

)
= 0 (29)

for 0 ≤ u1 < 2n, 0 ≤ u2 < 2m−1 +
∑k−1
α=1 2

m−k+α−1 + 2v

and (u1, u2) 6= (0, 0). Then we let h = g + u1 and j =
i+ u2 for any integers g and i. We also let (g1, g2, · · · , gn),
(i1, i2, · · · , im), (h1, h2, · · · , hn), and (j1, j2, · · · , jm) be the
binary representations of g, i, h, and j, respectively. For the
ease of presentation, we denote

al =

{
gl for 1 ≤ l ≤ n;
il−n for n < l ≤ n+m;

bl =

{
hl for 1 ≤ l ≤ n;
jl−n for n < l ≤ n+m;

(30)

In what follows, we consider four cases to show that the above
formula holds.

Case 1: If aπ(1) 6= bπ(1), we can find that c′ = c +
(q/2)zπ(1) for any arrayc ∈ G satisfying

ch,j − cg,i − c′h,j+c′g,i =
q

2
(aπ(1) − bπ(1)) ≡

q

2
(mod q).

(31)
Therefore, we have

ξch,j−cg,i + ξc
′
h,j−c

′
g,i = 0. (32)

Case 2: If am+n−k+α 6= bm+n−k+α, we can find that c′ =
c+ (q/2)zm+n−k+α for any array c ∈ G. Similar to Case 1,
we have ξch,j−cg,i + ξc

′
h,j−c

′
g,i = 0.

Case 3: If aπ(1) = bπ(1) and am+n−k+α = bm+n−k+α
for α = 1, 2, · · · , k. Suppose that α′ is the largest integer
satisfying am+n−k+α′ = bm+n−k+α′ = 0 for α′ ≤ k.
Then we assume β is the smallest integer which satisfies
aπ(β) 6= bπ(β). Let a′ and b′ be integers distinct from a
and b, respectively, only in one position π(β − 1). In other
words, a′π(β−1) = 1− aπ(β−1) and b′π(β−1) = 1− bπ(β−1). If
1 ≤ π(β − 1) ≤ n, by using the above definition, we have

cg′,i − cg,i
=
q

2

(
aπ(β−2)g

′
π(β−1) − aπ(β−2)gπ(β−1) + g′π(β−1)aπ(β)

−gπ(β−1)aπ(β)
)
+ pπ(β−1)g

′
π2(β−1) − pπ(β−1)gπ(β−1)

≡ q

2
(aπ(β−2) + aπ(β)) + pπ(β−1)(1− 2gπ(β−1)) (mod q).

(33)
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where a′π(β−1) = g′π(β−1) and aπ(β−1) = gπ(β−1). Since
aπ(β−2) = bπ(β−2) and aπ(β−1) = bπ(β−1), we have

ch,j − cg,i − ch′,j + cg′,i

≡ q

2
(aπ(β−2) − bπ(β−2) + aπ(β) − bπ(β))

+ pπ(β−1)(2hπ(β−1) − 2gπ(β−1))

≡ q

2
(aπ(β) − bπ(β)) ≡

q

2
(mod q)

(34)

implying ξch,j−cg,i/ξch′,j−cg′,i = −1. We can also obtain

ξch,j−cg,i + ξch′,j−cg′,i = 0. (35)

If n < π(β − 1) ≤ n + m, note that a′π(β−1) = i′π(β−1)−n
and aπ(β−1) = iπ(β − 1) − n according to (30). Following
the similar argument as given above, we can get ξch,j−cg,i +
ξch,j′−cg,i′ = 0.

Case 4: If aπ(1) = bπ(1) and am+n−k+α = bm+n−k+α = 1
for α = 1, 2, · · · , k. We assume β is the smallest integer such
that aπ(β) 6= bπ(β). Since as = bs = 0 for s = v + n+ 1, v +
n+2, · · · ,m+ n− k, we can obtain π(β) ≤ v+ n implying
π(β−1) ≤ v+n. If 1 ≤ π(β−1) ≤ n, by following the similar
argument as given above, we have ξch,j−cg,i+ξch′,j−cg′,i = 0.
If n < π(β−1) ≤ v+n, we have ξch,j−cg,i+ξch,j′−cg,i′ = 0.
From Cases 1 to 4, the theorem can be proved.

APPENDIX B
PROOF OF THEOREM 2

Proof: Similarly, we consider L1 = 2n and L2 = 2m−1+∑k−1
α=1 2

π1(m−k+α)−1+ 2v . Then we would like to prove that

∑
C

ρ(C;u1, u2) =
∑
c∈G

L1−1−u1∑
g=0

L2−1−u2∑
i=0

(
ξcg+u1,i+u2−cg,i

)
= 0

(36)
for 0 ≤ u1 < 2n, 0 ≤ u2 < 2m−1 +∑k−1
α=1 2

π1(m−k+α)−1 + 2v and (u1, u2) 6= (0, 0). From (4)
we can find that

c =
q

2

(
m−k−1∑
l=1

xπ1(l)xπ1(l+1) +

n−1∑
s=1

yπ2(s)yπ2(s+1)

+ xπ1(m)yπ2(n)

)
+

m−k∑
l=1

µlxπ1(l)xπ1(m) +

m∑
l=1

plxl

+

n∑
s=1

κsys + p0 · 1.

(37)
Then we let h = g+u1 and j = i+u2 for any integers g and
i. Next, we discuss seven cases to complete the proof.

Case 1: Assuming u1 > 0, u2 ≥ 0, and gπ2(1) 6= hπ2(1),
we can find an array c′ = c+ (q/2)yπ2(1) ∈ G for any array
c ∈ G. Therefore, we can obtain

ch,j − cg,i − c′h,j+c′g,i =
q

2
(gπ2(1) − hπ2(1)) ≡

q

2
(mod q)

(38)
Since gπ2(1) 6= hπ2(1), we have

ξch,j−cg,i/ξc
′
h,j−c

′
g,i = ξ

q
2 = −1. (39)

Thus,

ξch,j−cg,i + ξc
′
h,j−c

′
g,i = 0. (40)

Case 2: If u1 > 0, u2 ≥ 0, and gπ2(1) = hπ2(1). Let β be
the smallest integer such that gπ2(β) 6= hπ2(β). We define g′

and h′ are two integers which are distinct from g and h only
in one position π2(β − 1), respectively. Then, similar to Case
2 of Theorem 1, we have

ξch,j−cg,i + ξch′,j−cg′,i = 0. (41)

Case 3: We suppose im 6= jm, u1 = 0 and u2 > 0. We
let g′ be an integer distinct from i only in one position, i.e.,
g′π2(n)

= 1−gπ2(n). Similar to Case 3 of Theorem 1, we have
ξcg,j−cg,i + ξcg′,j−cg′,i = 0.

Case 4: If u1 = 0, u2 > 0, and iπ1(1) 6= jπ1(1) or
iπ1(m−k+α) 6= jπ1(m−k+α), we can find an array c′ =
c + (q/2)xπ1(1) ∈ G or c′ = c + (q/2)xπ1(m−k+α)
for any array c ∈ G. Similar to Case 1, we can obtain
ξcg,j−cg,i + ξc

′
g,j−c

′
g,i = 0.

Case 5: Suppose u1 = 0, u2 > 0, iπ1(1) = jπ1(1),
and iπ1(m−k+α) = jπ1(m−k+α) for all α = 1, 2, · · · , k.
Suppose that α′ is the largest non-negative integer satisfying
iπ1(m−k+α′) = jπ1(m−k+α′) = 0. Then we assume β is the
smallest integer which satisfies iπ1(β) 6= jπ1(β). Here, we
have is = js = 0 for s = π1(m − k + α′) + 1, π1(m −
k + α′) + 2, . . . ,m − 1, and s 6= π1(m − k + α) for α =
α′+1, α′+2, . . . , k. Hence, it implies π1(β) < π1(m−k+α′)
and π1(β − 1) < π1(m − k + α′) according to the condition
(C-3). Let i′ and j′ be integers that differ from i and j,
respectively, in the position π1(β − 1). Similar to Case 2, we
have

ξcg,j−cg,i + ξcg,j′−cg,i′ = 0. (42)

Case 6: Suppose u1 = 0, u2 > 0, iπ1(1) = jπ1(1), and
iπ1(m−k+α) = jπ1(m−k+α) = 1 for all α = 1, 2, · · · , k. Then
we assume β is the smallest integer which satisfies iπ1(β) 6=
jπ1(β). Since is = js = 0 for s = v+1, v+2, · · · ,m−k and
s 6= π1(m − k + α) for α = 1, 2, . . . , k − 1, we can obtain
π1(β) ≤ v implying π1(β − 1) ≤ v. Similar to Case 2, we
have

ξcg,j−cg,i + ξcg,j′−cg,i′ = 0. (43)

From Cases 1 to 6, the theorem can be proved.

APPENDIX C
CONSTRUCTED GCASS IN EXAMPLES 3 AND 4

The constructed GCASs in Example 3 and Example 4 are
presented in Table II and Table III, respectively.
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TABLE II
THE CONSTRUCTED (4, 4, 33)-GCAS IN EXAMPLE 3

c0 =


0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1
1 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1
1 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0
1 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1


c1 =


0 0 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 0 1
1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 1
1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 0
1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 1


c2 =


0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1
1 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1
0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1
0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0


c3 =


0 0 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 0 1
1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 1
0 0 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 0 1
0 0 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 0 0



TABLE III
THE CONSTRUCTED (8, 4, 21)-GCAS IN EXAMPLE 4

c0 =

 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1 0
0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1 0
0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0
1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1


c1 =

 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1
0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 1
1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0 1 1 0 1 0


c2 =

 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1
0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1
0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1
1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0


c3 =

 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0
1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1


c4 =

 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1 0
1 1 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1
0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0


c5 =

 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1
1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0
0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 1


c6 =

 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1
1 1 1 0 1 0 0 0 1 1 0 1 0 1 0 0 0 1 1 1 0
0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1
0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1


c7 =

 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0
1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0
0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 0



REFERENCES

[1] M. J. E. Golay, “Complementary series,” IRE Trans. Inf. Theory, vol.
IT-7, pp. 82–87, Apr. 1961.

[2] C.-C. Tseng and C. L. Liu, “Complementary sets of sequences,” IEEE
Trans. Inf. Theory, vol. IT-18, no. 5, pp. 644–652, Sep. 1972.

[3] N. Suehiro and M. Hatori, “N -shift cross-orthogonal sequences,” IEEE
Trans. Inf. Theory, vol. 34, no. 1, pp. 143–146, Jan. 1988.

[4] A. Pezeshki, A. R. Calderbank, W. Moran, and S. D. Howard, “Doppler
resilient Golay complementary waveforms,” IEEE Trans. Inf. Theory,
vol. 54, no. 9, pp. 4254–4266, Sep. 2008.

[5] P. Spasojevic and C. N. Georghiades, “Complementary sequences for
ISI channel estimation,” IEEE Trans. Inf. Theory, vol. 47, no. 3, pp.
1145–1152, Mar. 2001.

[6] D. Su, Y. Jiang, X. Wang, and X. Gao, “Omnidirectional precoding for
massive MIMO with uniform rectangular array—part I: complementary
codes-based schemes,” IEEE Trans. Signal Process., vol. 67, no. 18, pp.
4761–4771, Sep. 2019.

[7] Z. Liu, Y. Li, and Y. L. Guan, “New constructions of general QAM
Golay complementary sequences,” IEEE Trans. Inf. Theory, vol. 59,
no. 11, pp. 7684–7692, Nov. 2013.

[8] R. van Nee, “OFDM codes for peak-to-average power reduction and
error correction,” in Proc. IEEE Global Telecommun. Conf., London,
U.K., Nov. 1996, pp. 740–744.

[9] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM,
Golay complementary sequences, and Reed-Muller codes,” IEEE Trans.
Inf. Theory, vol. 45, no. 7, pp. 2397–2417, Nov. 1999.

[10] K. G. Paterson, “Generalized Reed-Muller codes and power control in
OFDM modulation,” IEEE Trans. Inf. Theory, vol. 46, no. 1, pp. 104–
120, Jan. 2000.

[11] K.-U. Schmidt, “Complementary sets, generalized Reed-Muller codes,
and power control for OFDM,” IEEE Trans. Inf. Theory, vol. 53, no. 2,
pp. 808–814, Feb. 2007.

[12] C.-Y. Chen, C.-H. Wang, and C.-C. Chao, “Complementary sets and
Reed-Muller codes for peak-to-average power ratio reduction in OFDM,”
in Proc. 16th Int. Symp. AAECC, LNCS 3857, Las Vegas, NV, Feb. 2006,
pp. 317–327.

[13] C.-Y. Chen, “Complementary sets of non-power-of-two length for peak-
to-average power ratio reduction in OFDM,” IEEE Trans. Inf. Theory,
vol. 62, no. 12, pp. 7538–7545, Dec. 2016.

[14] Z. Liu, Y. L. Guan, and H. H. Chen, “Fractional-delay-resilient receiver
design for interference-free MC-CDMA communications based on com-
plete complementary codes,” IEEE Trans. Wireless Commun., vol. 14,
no. 3, pp. 1226–1236, Mar. 2015.



11

[15] H.-H. Chen, J.-F. Yeh, and N. Suehiro, “A multicarrier CDMA archi-
tecture based on orthogonal complete complementary codes for new
generations of wideband wireless communications,” IEEE Commun.
Mag., vol. 39, pp. 126–134, Oct. 2001.

[16] N. Suehiro, “A signal design without co-channel interference for approx-
imately synchronized CDMA systems,” IEEE J. Sel. Areas Commun.,
vol. 12, pp. 837–841, Jun. 1994.

[17] S.-M. Tseng and M. R. Bell, “Asynchronous multicarrier DS-CDMA
using mutually orthogonal complementary sets of sequences,” IEEE
Trans. Commun., vol. 48, no. 1, pp. 53–59, Jan. 2000.

[18] J. M. Groenewald and B. T. Maharaj, “MIMO channel synchronization
using Golay complementary pairs,” in Proc. AFRICON 2007, Windhoek,
South Africa, Sep. 2007, pp. 1–5.

[19] S. Boyd, “Multitone signals with low crest factor,” IEEE Trans. Circuits
Syst., vol. CAS-33, no. 10, pp. 1018–1022, Oct. 1986.

[20] A.-A. Lu, X. Gao, X. Meng, and X.-G. Xia, “Omnidirectional precoding
for 3D massive MIMO with uniform planar arrays,” IEEE Trans.
Wireless Commun., vol. 19, no. 4, pp. 2628–2642, Apr. 2020.

[21] F. Li, Y. Jiang, C. Du, and X. Wang, “Construction of Golay com-
plementary matrices and its applications to MIMO omnidirectional
transmission,” IEEE Trans. Signal Process., vol. 69, pp. 2100–2113,
Mar. 2021.

[22] X. Meng, X. Gao, and X.-G. Xia, “Omnidirectional precoding based
transmission in massive MIMO systems,” IEEE Trans. Commun.,
vol. 64, no. 1, pp. 174–186, Jan. 2016.

[23] Y. Jiang, F. Li, X. Wang, and J. Li, “Autocorrelation complementary
matrices,” in Proc. 53rd Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, CA, USA, Nov. 2019, pp. 1596–1600.

[24] S. Matsufuji, R. Shigemitsu, Y. Tanada, and N. Kuroyanagi, “Construc-
tion of complementary arrays,” in Proc. Joint 1ST Workshop on Mobile
Future Symp. Trends Commun. (SympoTIC), Bratislave, Slovakia, Oct.
2004, pp. 78–81.

[25] Z. Wang and G. Gong, “Constructions of complementary sequence
sets and complete complementary codes by 2-level autocorrelation
sequences and permutation polynomials,” May 2020. [Online].
Available: https://arxiv.org/abs/2005.05825

[26] Z. Wang, D. Ma, G. Gong, and E. Xue, “New construction of comple-
mentary sequence (or array) sets and complete complementary codes,”
IEEE Trans. Inf. Theory, vol. 67, no. 7, pp. 4902–4928, Jul. 2021.

[27] C.-Y. Pai and C.-Y. Chen, “Constructions of two-dimensional Golay
complementary array pairs based on generalized Boolean functions,” in
Proc. IEEE Int. Symp. Inf. Theory, Los Angeles, California, USA, Jun.
2020, pp. 2931–2935.

[28] C.-Y. Pai and C.-Y. Chen, “Two-dimensional Golay complementary
array pairs/sets with bounded row and column sequence PAPRs,” IEEE
Trans. Commun., vol. 70, no. 6, pp. 3695–3707, Jun. 2022.

[29] Z. Liu, Y. L. Guan, and U. Parampalli, “New complete complementary
codes for peak-to-mean power control in multi-carrier CDMA,” IEEE
Trans. Commun., vol. 62, pp. 1105–1113, Mar. 2014.

[30] C.-Y. Pai, Z. Liu, Y.-Q. Zhao, Z.-M. Hunag, and C.-Y. Chen, “Designing
two-dimensional complete complementary codes for omnidirectional
transmission in massive MIMO systems,” in Proc. IEEE Int. Symp. Inf.
Theory, Espoo, Finland, Jun. 2022, pp. 1699–1704.

[31] T. Liu, X. Men, Y. Li, and X. Chen, “Constructions of 2-D Golay
complementary array sets for MIMO omnidirectional transmission,”
IEEE Commun. Lett., pp. 1459 – 1463, Jul. 2022.

[32] B. Shen, Y. Yang, and R. Ren, “Three constructions of Golay comple-
mentary array sets,” Adv. Math. Commun., Oct. 2022.

You-Qi Zhao received his B.S. degree in mechanical
and electro-mechanical engineering from the Na-
tional Sun Yat-sen University (NSYSU), Kaohsiung,
in 2020 and M.S. degree in engineering science
from the National Cheng Kung University (NCKU),
Tainan, Taiwan in 2022. Currently, he is an engineer
at the Wistron NeWeb Corp. in Taiwan.

Cheng-Yu Pai (Graduate Student Member, IEEE)
received the B.S. degree in engineering science
from the National Cheng Kung University (NCKU),
Tainan, Taiwan in 2018, where he is currently pursu-
ing the Ph.D. degree in engineering science. From
July 2022 to June 2023, he was a Visiting Ph.D.
Student with the University of Essex, Colchester,
UK (with Prof. Zilong Liu). His research interest
includes sequence design and its applications in
communications. He was a recipient of the 2nd Hon
Hai Technology Award administered by Hon Hai

Education Foundation, Taiwan, in 2022.

Zhen-Ming Huang (Graduate Student Member,
IEEE) received the B.S. degree in electrical en-
gineering from the National Kaohsiung University
of Science and Technology (NKUST), Kaohsiung,
Taiwan, in 2019, and the M.S. degree in engineering
science from the National Cheng Kung University
(NCKU), Tainan, Taiwan, in 2021, where he is cur-
rently pursuing the Ph.D. degree in engineering sci-
ence and communications engineering. His research
interests include sequences and their applications.

Zilong Liu (Senior Member, IEEE) has been with
the School of Computer Science and Electronic
Engineering, University of Essex, since December
2019, first as a Lecturer and then a Senior Lecturer
since October 2023. He received his PhD (2014)
from School of Electrical and Electronic Engineer-
ing, Nanyang Technological University (NTU, Sin-
gapore), Master Degree (2007) in the Department
of Electronic Engineering from Tsinghua University
(China), and Bachelor Degree (2004) in the School
of Electronics and Information Engineering from

Huazhong University of Science and Technology (HUST, China). He was
a Visiting PhD student to the University of Melbourne and the Hong Kong
University of Science and Technology. From Jan. 2018 to Nov. 2019, he
was a Senior Research Fellow at the Institute for Communication Systems
(ICS), Home of the 5G Innovation Centre (5GIC), University of Surrey, during
which he studied the air-interface design of 5G communication networks (e.g.,
machine-type communications, V2X communications, 5G New Radio). Prior
to his career in the UK, he spent nine and half years in NTU, first as a
Research Associate (Jul. 2008 to Oct. 2014) and then a Research Fellow (Nov.
2014 to Dec. 2017). His PhD thesis “Perfect- and Quasi- Complementary
Sequences”, focusing on fundamental limits, algebraic constructions, and
applications of complementary sequences in wireless communications, has
settled a few long-standing open problems in the field. His research lies in
the interplay of coding, signal processing, and communications, with a major
objective of bridging theory and practice as much as possible. Recently, he
has developed an interest in advanced 6G V2X communication technologies
for future connected autonomous vehicles as well as machine learning for
enhanced communications and networking. He is a Senior Member of IEEE
and an Associate Editor of IEEE Transactions on Vehicular Technology,
IEEE Transactions on Neural Networks and Learning Systems, IEEE Wireless
Communications Letters, IEEE Access, Frontiers in Communications and
Networks, Frontiers in Signal Processing, and Advances in Mathematics
of Communications. He was a Track Co-Chair on Networking and MAC
in IEEE PIMRC’2023. He was the Hosting General Co-Chair of the 10th
IEEE International Workshop on Signal Design and its Applications in
Communications (IWSDA’2022) and a TPC Co-Chair of the 2020 IEEE
International Conference on Advanced Networks and Telecommunications
Systems (ANTS’2020). He was a tutorial speaker of VTC-Fall’2021 and
APCC’2021 on code-domain NOMA. He was a Consultant to the Japanese
government on 6G assisted autonomous driving in 2023. Details of his
research can be found at: https://sites.google.com/site/zilongliu2357.



12

Chao-Yu Chen (Senior Member, IEEE) received the
B.S. degree in electrical engineering and the M.S.
and Ph.D. degrees in communications engineering
from the National Tsing Hua University (NTHU),
Hsinchu, in 2000, 2002 and 2009, respectively, under
the supervision of Prof. Chi-chao Chao.

He was a Visiting Ph.D. Student with the Univer-
sity of California, Davis, CA, USA, from 2008 to
2009 (with Prof. Shu Lin). From 2009 to 2016, he
was a Technical Manager with the Communication
System Design Division, Mediatek Inc., Hsinchu,

Taiwan. From July 2018 to August 2018, he was with the University of
California at Davis, as a Visiting Scholar (with Prof. Shu Lin). Since February
2016, he has been a Faculty Member with the National Cheng Kung University
(NCKU), Tainan, Taiwan, where he is currently an Associate Professor with
the Department of Electrical Engineering and the director of the Institute
of Computer and Communication Engineering. His current research interests
include sequence design, error-correcting codes, digital communications, and
wireless networks.

Dr. Chen was a recipient of the 15th and 20th Y. Z. Hsu Science Paper
Award administered by Far Eastern Y. Z. Hsu Science and Technology
Memorial Foundation, Taiwan, in 2017 and 2022, and the Best Paper Award
for Young Scholars by the IEEE Information Theory Society Taipei/Tainan
Chapter and the IEEE Communications Society Taipei/Tainan Chapter in
2018. Since January 2019, he has been serving as the Vice Chair for the
IEEE Information Theory Society Tainan Chapter.


