43 research outputs found

    Adaptive locomotion of artificial microswimmers

    Full text link
    Bacteria can exploit mechanics to display remarkable plasticity in response to locally changing physical and chemical conditions. Compliant structures play a striking role in their taxis behavior, specifically for navigation inside complex and structured environments. Bioinspired mechanisms with rationally designed architectures capable of large, nonlinear deformation present opportunities for introducing autonomy into engineered small-scale devices. This work analyzes the effect of hydrodynamic forces and rheology of local surroundings on swimming at low Reynolds number, identifies the challenges and benefits of utilizing elastohydrodynamic coupling in locomotion, and further develops a suite of machinery for building untethered microrobots with self-regulated mobility. We demonstrate that coupling the structural and magnetic properties of artificial microswimmers with the dynamic properties of the fluid leads to adaptive locomotion in the absence of on-board sensors

    Adaptive locomotion of artificial microswimmers.

    Get PDF
    Bacteria can exploit mechanics to display remarkable plasticity in response to locally changing physical and chemical conditions. Compliant structures play a notable role in their taxis behavior, specifically for navigation inside complex and structured environments. Bioinspired mechanisms with rationally designed architectures capable of large, nonlinear deformation present opportunities for introducing autonomy into engineered small-scale devices. This work analyzes the effect of hydrodynamic forces and rheology of local surroundings on swimming at low Reynolds number, identifies the challenges and benefits of using elastohydrodynamic coupling in locomotion, and further develops a suite of machinery for building untethered microrobots with self-regulated mobility. We demonstrate that coupling the structural and magnetic properties of artificial microswimmers with the dynamic properties of the fluid leads to adaptive locomotion in the absence of on-board sensors.ER

    Excess DHA Induces Liver Injury via Lipid Peroxidation and Gut Microbiota-Derived Lipopolysaccharide in Zebrafish

    Get PDF
    Being highly unsaturated, n-3 long-chain polyunsaturated fatty acids (LC-PUFAs) are prone to lipid peroxidation. In this study, zebrafish were fed with low-fat diet (LFD), high-fat diet (HFD), or 2% DHA-supplemented HFD (HFDHA2.0). To study the possible negative effects of the high level of dietary DHA, growth rates, blood chemistry, liver histology, hepatic oxidative stress, apoptosis, and inflammatory processes were assessed. The cell studies were used to quantify the effects of DHA and antioxidant on cellular lipid peroxidation and viability. The possible interaction between gut microbiota and zebrafish host was evaluated in vitro. HFDHA2.0 had no effect on hepatic lipid level but induced liver injury, oxidative stress, and hepatocellular apoptosis, including intrinsic and death receptor-induced apoptosis. Besides, the inclusion of 2% DHA in HFD increased the abundance of Proteobacteria in gut microbiota and serum endotoxin level. In the zebrafish liver cell model, DHA activated intrinsic apoptosis while the antioxidant 4-hydroxy-Tempo (tempo) inhibited the pro-apoptotic negative effects of DHA. The apoptosis induced by lipopolysaccharide (LPS) was unaffected by the addition of tempo. In conclusion, the excess DHA supplementation generates hepatocellular apoptosis-related injury to the liver. The processes might propagate along at least two routes, involving lipid peroxidation and gut microbiota-generated LPS

    Intestinal Cetobacterium and acetate modify glucose homeostasis via parasympathetic activation in zebrafish.

    Full text link
    peer reviewedThe capability of carbohydrate utilization in fish is limited compared to mammals. It has scientific and practical significance to improve the ability of fish to use carbohydrates. The efficiency of dietary carbohydrate utilization varies among fish with different feeding habits, which are associated with differential intestinal microbiota. In this study, we found that zebrafish fed with omnivorous diet (OD) and herbivorous diet (HD) showed better glucose homeostasis compared with carnivorous diet (CD) fed counterpart and the differential glucose utilization efficiency was attributable to the intestinal microbiota. The commensal bacterium Cetobacterium somerae, an acetate producer, was enriched in OD and HD groups, and administration of C. somerae in both adult zebrafish and gnotobiotic larval zebrafish models resulted in improved glucose homeostasis and increased insulin expression, supporting a causative role of C. somerae enrichment in glucose homeostasis in fish. The enrichment of C. somerae was constantly associated with higher acetate levels, and dietary supplementation of acetate promotes glucose utilization in zebrafish, suggesting a contribution of acetate in the function of C. somerae. Furthermore, we found that the beneficial effect of both acetate and C. somerae on glucose homeostasis was mediated through parasympathetic activation. Overall, this work highlights the existence of a C. somerae-brain axis in the regulation of glucose homeostasis in fish and suggests a role of acetate in mediating the axis function. Our results suggest potential strategies for improvement of fish carbohydrate utilization

    Spermidine endows macrophages anti-inflammatory properties by inducing mitochondrial superoxide-dependent AMPK activation, Hif-1α upregulation and autophagy.

    Get PDF
    Distinct metabolic programs, either energy-consuming anabolism or energy-generating catabolism, were required for different biological functions. Macrophages can adopt different immune phenotypes in response to various cues and exhibit anti- or pro-inflammatory properties relying on catabolic pathways associated with oxidative phosphorylation (OXPHOS) or glycolysis. Spermidine, a natural polyamine, has been reported to regulate inflammation through inducing anti-inflammatory (M2) macrophages. However, the underlying mechanisms remain elusive. We show here that the M2-polarization induced by spermidine is mediated by mitochondrial reactive oxygen species (mtROS). The levels of mitochondrial superoxide and H2O2 were markedly elevated by spermidine. Mechanistically, mtROS were found to activate AMP-activated protein kinase (AMPK), which in turn enhanced mitochondrial function. Furthermore, hypoxia-inducible factor-1α (Hif-1α) was upregulated by the AMPK activation and mtROS and was required for the expression of anti-inflammatory genes and induction of autophagy. Consistent with previous report that autophagy is required for the M2 polarization, we found that the M2 polarization induced by spermidine was also mediated by increased autophagy. The macrophages treated with spermidine in vitro were found to ameliorate Dextran Sulfate Sodium (DSS)-induced inflammatory bowel disease (IBD) in mice. Thus, spermidine can elicit an anti-inflammatory program driven by mtROS-dependent AMPK activation, Hif-1α stabilization and autophagy induction in macrophages. Our studies revealed a critical role of mtROS in shaping macrophages into M2-like phenotype and provided novel information for management of inflammatory disease by spermidine

    Investigation into the Antibacterial Mechanism of Biogenic Tellurium Nanoparticles and Precursor Tellurite

    No full text
    Antibacterial tellurium nanoparticles have the advantages of high activity and biocompatibility. Microbial synthesis of Te nanoparticles is not only a green technology but builds new ecological relationships in diverse environments. However, the antibacterial mechanism of Te nanoparticles is largely unclear. In this study, we report the bacterial synthesis of rod-shaped Te nanoparticles (BioTe) with high antibacterial activity against Escherichia coli. Morphology and permeability examination indicates that membrane damage is the primary reason for the antibacterial activity of BioTe, rather than ROS production and DNA damage. Moreover, a comparison of transcriptome and relative phenotypes reveals the difference in antibacterial mechanisms between BioTe and tellurite. Based on our evidence, we propose an antibacterial mode of rod-shaped BioTe, in which positively charged BioTe interact with the cell membrane through electrostatic attraction and then penetrate the membrane by using their sharp ends. In contrast, tellurite toxicity might be involved in sulfur metabolism

    Enhancing bone regeneration with a novel bioactive glass-functionalized polyetheretherketone scaffold by regulating the immune microenvironment

    No full text
    Polyetheretherketone (PEEK) has become a promising material for bone engineering due to its excellent mechanical properties, radiolucency and chemical resistance. However, its inherent bioinertness and lack of osteogenic activity induce a foreign body reaction and fibrous encapsulation, which limits its effectiveness in promoting bone regeneration. Herein, we develop a novel bioactive glass–functionalized PEEK scaffold (ADSP) to accelerate bone regeneration by immunoregulation. Strontium-doped bioactive glass nanoparticles loaded with alendronate (A-SrBG) were coated on the sulfonated PEEK scaffold by the strong adhesion ability of polydopamine. The released bioactive ions from the scaffold can improve the biocompatibilities and osteogenic activity of PEEK. In vitro results showed the ADSP scaffold promoted polarization of the M2 macrophages via the NF-κB pathway to enhance the osteogenic differentiation of rat bone mesenchymal stem cells (rBMSCs). Further, in vivo rat skull drilling model assessment revealed efficient polarization of M2 macrophage and desirable new bone formation. Thus, ADSP scaffold exerted osteoimmunomodulation effect to promote bone regeneration

    Realistic Data-Driven Traffic Flow Animation Using Texture Synthesis

    No full text

    A Survey on Visual Traffic Simulation: Models, Evaluations, and Applications in Autonomous Driving

    No full text
    Virtualized traffic via various simulation models and real-world traffic data are promising approaches to reconstruct detailed traffic flows. A variety of applications can benefit from the virtual traffic, including, but not limited to, video games, virtual reality, traffic engineering and autonomous driving. In this survey, we provide a comprehensive review on the state-of-the-art techniques for traffic simulation and animation. We start with a discussion on three classes of traffic simulation models applied at different levels of detail. Then, we introduce various data-driven animation techniques, including existing data collection methods, and the validation and evaluation of simulated traffic flows. Next, we discuss how traffic simulations can benefit the training and testing of autonomous vehicles. Finally, we discuss the current states of traffic simulation and animation and suggest future research directions
    corecore