Bacteria can exploit mechanics to display remarkable plasticity in response
to locally changing physical and chemical conditions. Compliant structures play
a striking role in their taxis behavior, specifically for navigation inside
complex and structured environments. Bioinspired mechanisms with rationally
designed architectures capable of large, nonlinear deformation present
opportunities for introducing autonomy into engineered small-scale devices.
This work analyzes the effect of hydrodynamic forces and rheology of local
surroundings on swimming at low Reynolds number, identifies the challenges and
benefits of utilizing elastohydrodynamic coupling in locomotion, and further
develops a suite of machinery for building untethered microrobots with
self-regulated mobility. We demonstrate that coupling the structural and
magnetic properties of artificial microswimmers with the dynamic properties of
the fluid leads to adaptive locomotion in the absence of on-board sensors