25,259 research outputs found

    Decays of the Meson BcB_c to a PP-Wave Charmonium State χc\chi_c or hch_c

    Full text link
    The semileptonic decays, Bcχc(hc)++νB_{c}{\longrightarrow}{\chi_c}(h_c)+{\ell}+{{\nu}}_{\ell}, and the two-body nonleptonic decays, Bcχc(hc)+hB_{c}{\longrightarrow}{\chi_c}(h_c)+h, (here χc\chi_c and hch_c denote (ccˉ[3PJ])(c\bar c[^3P_J]) and (ccˉ[1P1])(c\bar c[^1P_1]) respectively, and hh indicates a meson) were computed. All of the form factors appearing in the relevant weak-current matrix elements with BcB_c as its initial state and a PP-wave charmonium state as its final state for the decays were precisely formulated in terms of two independent overlapping-integrations of the wave-functions of BcB_c and the PP-wave charmonium and with proper kinematics factors being `accompanied'. We found that the decays are quite sizable, so they may be accessible in Run-II at Tevatron and in the foreseen future at LHC, particularly, when BTeV and LHCB, the special detectors for B-physics, are borne in mind. In addition, we also pointed out that the decays Bchc+...B_c\to h_c+... may potentially be used as a fresh window to look for the hch_c charmonium state, and the cascade decays, Bcχc[3P1,2]+l+νlB_c\to \chi_c[^3P_{1,2}]+l+\nu_l (Bcχc[3P1,2]+hB_c\to \chi_c[^3P_{1,2}]+h) with one of the radiative decays χc[3P1,2]J/ψ+γ\chi_c[^3P_{1,2}] \to J/\psi+\gamma being followed accordingly, may affect the observations of BcB_c meson through the decays BcJ/ψ+l+νlB_{c}\to {J/\psi}+{l}+\nu_{l} (BcJ/ψ+hB_c\to J/\psi+h) substantially.Comment: 24 pages, 3 figures, the replacement for improving the presentation and adding reference

    A Green's function decoupling scheme for the Edwards fermion-boson model

    Full text link
    Holes in a Mott insulator are represented by spinless fermions in the fermion-boson model introduced by Edwards. Although the physically interesting regime is for low to moderate fermion density the model has interesting properties over the whole density range. It has previously been studied at half-filling in the one-dimensional (1D) case by numerical methods, in particular exact diagonalization and density matrix renormalization group (DMRG). In the present study the one-particle Green's function is calculated analytically by means of a decoupling scheme for the equations of motion, valid for arbitrary density in 1D, 2D and 3D with fairly large boson energy and zero boson relaxation parameter. The Green's function is used to compute some ground state properties, and the one-fermion spectral function, for fermion densities n=0.1, 0.5 and 0.9 in the 1D case. The results are generally in good agreement with numerical results obtained by DMRG and dynamical DMRG and new light is shed on the nature of the ground state at different fillings. The Green's function approximation is sufficiently successful in 1D to justify future application to the 2D and 3D cases.Comment: 19 pages, 7 figures, final version with updated reference

    StochKit-FF: Efficient Systems Biology on Multicore Architectures

    Full text link
    The stochastic modelling of biological systems is an informative, and in some cases, very adequate technique, which may however result in being more expensive than other modelling approaches, such as differential equations. We present StochKit-FF, a parallel version of StochKit, a reference toolkit for stochastic simulations. StochKit-FF is based on the FastFlow programming toolkit for multicores and exploits the novel concept of selective memory. We experiment StochKit-FF on a model of HIV infection dynamics, with the aim of extracting information from efficiently run experiments, here in terms of average and variance and, on a longer term, of more structured data.Comment: 14 pages + cover pag

    Olfaction Contributes to Pelagic Navigation in a Coastal Shark.

    Get PDF
    How animals navigate the constantly moving and visually uniform pelagic realm, often along straight paths between distant sites, is an enduring mystery. The mechanisms enabling pelagic navigation in cartilaginous fishes are particularly understudied. We used shoreward navigation by leopard sharks (Triakis semifasciata) as a model system to test whether olfaction contributes to pelagic navigation. Leopard sharks were captured alongshore, transported 9 km offshore, released, and acoustically tracked for approximately 4 h each until the transmitter released. Eleven sharks were rendered anosmic (nares occluded with cotton wool soaked in petroleum jelly); fifteen were sham controls. Mean swimming depth was 28.7 m. On average, tracks of control sharks ended 62.6% closer to shore, following relatively straight paths that were significantly directed over spatial scales exceeding 1600 m. In contrast, tracks of anosmic sharks ended 37.2% closer to shore, following significantly more tortuous paths that approximated correlated random walks. These results held after swimming paths were adjusted for current drift. This is the first study to demonstrate experimentally that olfaction contributes to pelagic navigation in sharks, likely mediated by chemical gradients as has been hypothesized for birds. Given the similarities between the fluid three-dimensional chemical atmosphere and ocean, further research comparing swimming and flying animals may lead to a unifying paradigm explaining their extraordinary navigational abilities

    The meson BcB_c annihilation to leptons and inclusive light hadrons

    Get PDF
    The annihilation of the BcB_c meson to leptons and inclusive light hadrons is analyzed in the framework of nonrelativistic QCD (NRQCD) factorization. We find that the decay mode, which escapes from the helicity suppression, contributes a sizable fraction width. According to the analysis, the branching ratio due to the contribution from the color-singlet component of the meson BcB_c can be of order (10^{-2}). We also estimate the contributions from the color-octet components. With the velocity scaling rule of NRQCD, we find that the color-octet contributions are sizable too, especially, in certain phase space of the annihilation they are greater than (or comparative to) the color-singlet component. A few observables relevant to the spectrum of charged lepton are suggested, that may be used as measurements on the color-octet and color-singlet components in the future BcB_c experiments. A typical long distance contribution in the annihilation is estimated too.Comment: 26 pages, 5 figures (6 eps-files), submitted to Phys. Rev.

    b --> s g g decay in the two and three Higgs doublet models with CP violating effects

    Get PDF
    We study the decay width and CP-asymmetry of the inclusive process b--> s g g (g denotes gluon) in the three and two Higgs doublet models with complex Yukawa couplings. We analyse the dependencies of the differential decay width and CP-asymmetry to the s- quark energy E_s and CP violating parameter \theta. We observe that there exist a considerable enhancement in the decay width and CP asymmetry is at the order of 10^{-2}. Further, it is possible to predict the sign of C_7^{eff} using the CP asymmetry.Comment: 15 pages, 7 Figures (required epsf style

    Exact 1-D Model for Coherent Synchrotron Radiation with Shielding and Bunch Compression

    Full text link
    Coherent Synchrotron Radiation has been studied effectively using a 1-dimensional model for the charge distribution in the realm of small angle approximations and high energies. Here we use Jefimenko's form of Maxwell's equations, without such approximations, to calculate the exact wake-fields due to this effect in multiple bends and drifts. It has been shown before that the influence of a drift can propagate well into a subsequent bend. We show, for reasonable parameters, that the influence of a previous bend can also propagate well into a subsequent bend, and that this is especially important at the beginning of a bend. Shielding by conducting parallel plates is simulated using the image charge method. We extend the formalism to situations with compressing and decompressing distributions, and conclude that simpler approximations to bunch compression usually overestimates the effect. Additionally, an exact formula for the coherent power radiated by a Gaussian bunch is derived by considering the coherent synchrotron radiation spectrum, and is used to check the accuracy of wake-field calculations

    Weak-Light Ultraslow Vector Optical Solitons via Electromagnetically Induced Transparency

    Full text link
    We propose a scheme to generate temporal vector optical solitons in a lifetime broadened five-state atomic medium via electromagnetically induced transparency. We show that this scheme, which is fundamentally different from the passive one by using optical fibers, is capable of achieving distortion-free vector optical solitons with ultraslow propagating velocity under very weak drive conditions. We demonstrate both analytically and numerically that it is easy to realize Manakov temporal vector solitons by actively manipulating the dispersion and self- and cross-phase modulation effects of the system.Comment: 4 pages, 4 figure
    corecore