124 research outputs found

    Familial Myeloproliferative Disorders

    Get PDF
    Review on Familial Myeloproliferative Disorders, with data on clinics, and the genes involved

    Genetic Alterations of the Thrombopoietin/MPL/JAK2 Axis Impacting Megakaryopoiesis

    Get PDF
    Megakaryopoiesis is an original and complex cell process which leads to the formation of platelets. The homeostatic production of platelets is mainly regulated and controlled by thrombopoietin (TPO) and the TPO receptor (MPL)/JAK2 axis. Therefore, any hereditary or acquired abnormality affecting this signaling axis can result in thrombocytosis or thrombocytopenia. Thrombocytosis can be due to genetic alterations that affect either the intrinsic MPL signaling through gain-of-function (GOF) activity (MPL, JAK2, CALR) and loss-of-function (LOF) activity of negative regulators (CBL, LNK) or the extrinsic MPL signaling by THPO GOF mutations leading to increased TPO synthesis. Alternatively, thrombocytosis may paradoxically result from mutations of MPL leading to an abnormal MPL trafficking, inducing increased TPO levels by alteration of its clearance. In contrast, thrombocytopenia can also result from LOF THPO or MPL mutations, which cause a complete defect in MPL trafficking to the cell membrane, impaired MPL signaling or stability, defects in the TPO/MPL interaction, or an absence of TPO production

    Classification of and risk factors for hematologic complications in a French national cohort of 102 patients with Shwachman-Diamond syndrome.

    Get PDF
    International audienceBACKGROUND: Patients with the Shwachman-Diamond syndrome often develop hematologic complications. No risk factors for these complications have so far been identified. The aim of this study was to classify the hematologic complications occurring in patients with Shwachman-Diamond syndrome and to investigate the risk factors for these complications. DESIGN AND METHODS: One hundred and two patients with Shwachman-Diamond syndrome, with a median follow-up of 11.6 years, were studied. Major hematologic complications were considered in the case of definitive severe cytopenia (i.e. anemia <7 g/dL or thrombocytopenia <20 × 10(9)/L), classified as malignant (myelodysplasia/leukemia) according to the 2008 World Health Organization classification or as non-malignant. RESULTS: Severe cytopenia was observed in 21 patients and classified as malignant severe cytopenia (n=9), non-malignant severe cytopenia (n=9) and malignant severe cytopenia preceded by non-malignant severe cytopenia (n=3). The 20-year cumulative risk of severe cytopenia was 24.3% (95% confidence interval: 15.3%-38.5%). Young age at first symptoms (<3 months) and low hematologic parameters both at diagnosis of the disease and during the follow-up were associated with severe hematologic complications (P<0.001). Fifteen novel SBDS mutations were identified. Genotype analysis showed no discernible prognostic value. CONCLUSIONS Patients with Shwachman-Diamond syndrome with very early symptoms or cytopenia at diagnosis (even mild anemia or thrombocytopenia) should be considered at a high risk of severe hematologic complications, malignant or non-malignant. Transient severe cytopenia or an indolent cytogenetic clone had no deleterious value

    Congenital hyperinsulinism: current trends in diagnosis and therapy

    Get PDF
    Congenital hyperinsulinism (HI) is an inappropriate insulin secretion by the pancreatic β-cells secondary to various genetic disorders. The incidence is estimated at 1/50, 000 live births, but it may be as high as 1/2, 500 in countries with substantial consanguinity. Recurrent episodes of hyperinsulinemic hypoglycemia may expose to high risk of brain damage. Hypoglycemias are diagnosed because of seizures, a faint, or any other neurological symptom, in the neonatal period or later, usually within the first two years of life. After the neonatal period, the patient can present the typical clinical features of a hypoglycemia: pallor, sweat and tachycardia. HI is a heterogeneous disorder with two main clinically indistinguishable histopathological lesions: diffuse and focal. Atypical lesions are under characterization. Recessive ABCC8 mutations (encoding SUR1, subunit of a potassium channel) and, more rarely, recessive KCNJ11 (encoding Kir6.2, subunit of the same potassium channel) mutations, are responsible for most severe diazoxide-unresponsive HI. Focal HI, also diazoxide-unresponsive, is due to the combination of a paternally-inherited ABCC8 or KCNJ11 mutation and a paternal isodisomy of the 11p15 region, which is specific to the islets cells within the focal lesion. Genetics and 18F-fluoro-L-DOPA positron emission tomography (PET) help to diagnose diffuse or focal forms of HI. Hypoglycemias must be rapidly and intensively treated to prevent severe and irreversible brain damage. This includes a glucose load and/or a glucagon injection, at the time of hypoglycemia, to correct it. Then a treatment to prevent the recurrence of hypoglycemia must be set, which may include frequent and glucose-enriched feeding, diazoxide and octreotide. When medical and dietary therapies are ineffective, or when a focal HI is suspected, surgical treatment is required. Focal HI may be definitively cured when the partial pancreatectomy removes the whole lesion. By contrast, the long-term outcome of diffuse HI after subtotal pancreatectomy is characterized by a high risk of diabetes, but the time of its onset is hardly predictable

    Molecular Diagnosis of Neonatal Diabetes Mellitus Using Next-Generation Sequencing of the Whole Exome

    Get PDF
    Background: Accurate molecular diagnosis of monogenic non-autoimmune neonatal diabetes mellitus (NDM) is critical for patient care, as patients carrying a mutation in KCNJ11 or ABCC8 can be treated by oral sulfonylurea drugs instead of insulin therapy. This diagnosis is currently based on Sanger sequencing of at least 42 PCR fragments from the KCNJ11, ABCC8, and INS genes. Here, we assessed the feasibility of using the next-generation whole exome sequencing (WES) for the NDM molecular diagnosis. Methodology/Principal Findings: We carried out WES for a patient presenting with permanent NDM, for whom mutations in KCNJ11, ABCC8 and INS and abnormalities in chromosome 6q24 had been previously excluded. A solution hybridization selection was performed to generate WES in 76 bp paired-end reads, by using two channels of the sequencing instrument. WES quality was assessed using a high-resolution oligonucleotide whole-genome genotyping array. From our WES with high-quality reads, we identified a novel non-synonymous mutation in ABCC8 (c.1455G.C/p.Q485H), despite a previous negative sequencing of this gene. This mutation, confirmed by Sanger sequencing, was not present in 348 controls and in the patient’s mother, father and young brother, all of whom are normoglycemic. Conclusions/Significance: WES identified a novel de novo ABCC8 mutation in a NDM patient. Compared to the current Sanger protocol, WES is a comprehensive, cost-efficient and rapid method to identify mutations in NDM patients. W

    EFL1 mutations impair eIF6 release to cause Shwachman-Diamond syndrome.

    Get PDF
    Shwachman-Diamond syndrome (SDS) is a recessive disorder typified by bone marrow failure and predisposition to hematological malignancies. SDS is predominantly caused by deficiency of the allosteric regulator Shwachman-Bodian-Diamond syndrome that cooperates with elongation factor-like GTPase 1 (EFL1) to catalyze release of the ribosome antiassociation factor eIF6 and activate translation. Here, we report biallelic mutations in EFL1 in 3 unrelated individuals with clinical features of SDS. Cellular defects in these individuals include impaired ribosomal subunit joining and attenuated global protein translation as a consequence of defective eIF6 eviction. In mice, Efl1 deficiency recapitulates key aspects of the SDS phenotype. By identifying biallelic EFL1 mutations in SDS, we define this leukemia predisposition disorder as a ribosomopathy that is caused by corruption of a fundamental, conserved mechanism, which licenses entry of the large ribosomal subunit into translation.Medical Research Council, Bloodwise, Wellcome Trust, Ted’s Gang, The Connor Wright Shwachman Diamond Projec

    New evidence of a mitochondrial genetic background paradox: Impact of the J haplogroup on the A3243G mutation

    Get PDF
    International audienceBackground: The A3243G mutation in the tRNALeu gene (UUR), is one of the most common pathogenic mitochondrial DNA (mtDNA) mutations in France, and is associated with highly variable and heterogeneous disease phenotypes. To define the relationships between the A3243G mutation and mtDNA backgrounds, we determined the haplogroup affiliation of 142 unrelated French patients – diagnosed as carriers of the A3243G mutation – by control-region sequencing and RFLP survey of their mtDNAs. Results: The analysis revealed 111 different haplotypes encompassing all European haplogroups, indicating that the 3243 site might be a mutational hot spot. However, contrary to previous findings, we observed a statistically significant underepresentation of the A3243G mutation on haplogroup J in patients (p = 0.01, OR = 0.26, C.I. 95%: 0.08–0.83), suggesting that might be due to a strong negative selection at the embryo or germ line stages. Conclusion: Thus, our study supports the existence of mutational hotspot on mtDNA and a "haplogroup J paradox," a haplogroup that may increase the expression of mtDNA pathogenic mutations, but also be beneficial in certain environmental contexts

    Clinical Characteristics and Diagnostic Criteria of Maturity-Onset Diabetes Of The Young (MODY) due to Molecular Anomalies of the HNF1A Gene

    Get PDF
    Context: The diagnosis of maturity-onset diabetes of the young type 3 (MODY3), associated with HNF1A molecular abnormalities, is often missed.Objective: The objective of the study was to describe the phenotypes of a large series of MODY3 patients and to reassess parameters that may improve its diagnosis. Design, Setting, and Patients: This retrospective multicenter study included 487 unrelated patients referred because of suspicion of MODY3. Genetic analysis identified 196 MODY3 and 283 non-MODY3 cases. Criteria associated with MODY3 were assessed by multivariate analysis. The capacity of the model to predict MODY3 diagnosis was assessed by the area under the receiver-operating characteristic curve and was further validated in an independent sample of 851 patients (165 MODY3 and 686 non-MODY3). Results: In the MODY3 patients, diabetes was revealed by clinical symptoms in 25% of the cases and was diagnosed by screening in the others. Age at diagnosis of diabetes was more than 25 yr in 40% of the MODY3 patients. There was considerable variability and overlap of all assessed parameters in MODY3 and non-MODY3 patients. The best predictive model was based on criteria available at diagnosis of diabetes, including age, body mass index, number of affected generations, presence of diabetes symptoms, and geographical origin. The area under the curve of the receiver-operating characteristic analysis was 0.81. When sensitivity was set to 90%, specificity was 49%. Conclusions: Differential diagnosis between MODY3 and early-onset type 2 diabetes remains difficult. Whether the proposed model will improve the pick-up rate of MODY3 diagnosis needs to be confirmed in independent populations

    Somatic genetic alterations predict hematological progression in GATA2 deficiency

    Get PDF
    Germline GATA2 mutations predispose to myeloid malignancies resulting from the progressive acquisition of additional somatic mutations. Here we describe clinical and biological features of 78 GATA2-deficient patients. Hematopoietic stem and progenitor cell phenotypic characterization revealed an exhaustion of myeloid progenitors. Somatic mutations in STAG2, ASXL1 and SETBP1 genes along with cytogenetic abnormalities (monosomy 7, trisomy 8, der(1;7)) occurred frequently in patients with GATA2 germline mutations. Patients were classified into three hematopoietic spectra based on bone marrow cytomorphology. No somatic additional mutations were detected in patients with normal bone marrow (spectrum 0), whereas clonal hematopoiesis mediated by STAG2 mutations was frequent in those with a hypocellular and/or myelodysplastic bone marrow without excess blasts (spectrum 1). Finally, SETBP1, RAS pathway and RUNX1 mutations were predominantly associated with leukemic transformation stage (spectrum 2), highlighting their implications in the transformation process. Specific somatic alterations, potentially providing distinct selective advantages to affected cells, are therefore associated with the clinical/hematological evolution of GATA2 syndrome. Our study not only suggests that somatic genetic profiling will help clinicians in their management of patients, but will also clarify the mechanism of leukemogenesis in the context of germline GATA2 mutations

    Traitement chirurgical des pseudarthroses du scaphoïde carpien par greffon non vasculaire

    No full text
    LILLE2-BU Santé-Recherche (593502101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF
    corecore