32 research outputs found

    Arrhythmogenic late Ca2+sparks in failing heart cells and their control by action potential configuration

    Get PDF
    Sudden death in heart failure patients is a major clinical problem worldwide, but it is unclear how arrhythmogenic early afterdepolarizations (EADs) are triggered in failing heart cells. To examine EAD initiation, high-sensitivity intracellular Ca2+ measurements were combined with action potential voltage clamp techniques in a physiologically relevant heart failure model. In failing cells, the loss of Ca2+ release synchrony at the start of the action potential leads to an increase in number of microscopic intracellular Ca2+ release events (“late” Ca2+ sparks) during phase 2–3 of the action potential. These late Ca2+ sparks prolong the Ca2+ transient that activates contraction and can trigger propagating microscopic Ca2+ ripples, larger macroscopic Ca2+ waves, and EADs. Modification of the action potential to include steps to different potentials revealed the amount of current generated by these late Ca2+ sparks and their (subsequent) spatiotemporal summation into Ca2+ ripples/waves. Comparison of this current to the net current that causes action potential repolarization shows that late Ca2+ sparks provide a mechanism for EAD initiation. Computer simulations confirmed that this forms the basis of a strong oscillatory positive feedback system that can act in parallel with other purely voltage-dependent ionic mechanisms for EAD initiation. In failing heart cells, restoration of the action potential to a nonfailing phase 1 configuration improved the synchrony of excitation–contraction coupling, increased Ca2+ transient amplitude, and suppressed late Ca2+ sparks. Therapeutic control of late Ca2+ spark activity may provide an additional approach for treating heart failure and reduce the risk for sudden cardiac death

    Retraction Mechanics of Finochietto-Style Self-Retaining Thoracic Retractors

    Get PDF
    Abstract Objectives Analyze the mechanics of Finochietto-style retractors, including the responses of thoracic tissues during thoracotomy, with an emphasis on tissue trauma and means for its reduction. Methods Mechanical analyses of the retractor were performed, including analysis of deformation under load and kinematics of the crank mechanism. Thoracotomies in a porcine model were performed in anesthetized animals (7) and fresh cadavers (17) using an instrumented retractor. Results Mechanical analyses revealed that arm motion is a non-linear function of handle rotation, that deformation of the retractor under load concentrates force at one edge of the retractor blade, and that the retractor behaves like a spring, deforming under the load of retraction and continuing to force open the incision long after crank rotation stops. Experimental thoracotomies included retractions ranging from 50 to 112 mm over 30 to 370 s, generating maximum forces of 118 to 470 N (12–50 kgf). Tissue ruptures occurred in 12 of the 24 retractions. These ruptures all occurred at retraction distances wider than 30 mm and at forces greater than 122.5 N. Significant tissue ruptures were observed for nearly all retractions at higher retraction rates (exceeding ½ rotation of the crank per 10 s). Conclusions The Finochietto-style retractor can generate large forces and some aspects of its design increase the probability of tissue trauma

    Changes in chemical and ultrastructural composition of ameroid constrictors following in vitro expansion

    Get PDF
    ObjectiveTo (1) characterise the chemical and ultra-structural composition of ameroid constrictors, at a native state and during in vitro expansion and (2) determine the presence of irritant compounds at the surface or within the bulk of the constrictor.MethodsTwelve sterile, commercially packaged ameroid constrictors (3 repeats of 3.5 mm, 5 mm, 6 mm and 7 mm internal diameter) were analysed by time-of-flight secondary ion mass spectrometry, Raman spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy and scanning electron microscopy.ResultsAmeroid constrictors have a composition commensurate with casein with little-to-no intra- or inter- constrictor variation. Microscopic analysis indicated that the topographical features of the constrictor surfaces were consistent between all constrictors. Following in vitro expansion there was a reproducible decrease in Ca+ ion content, little-to-no variation in secondary protein structure and morphological changes including the presence of surface aggregates present only at the inner surface of the ameroid constrictor. The potential irritant polydimethylsiloxane was found on the constrictor surface. A trace quantity of an ion fragment assigned as formaldehyde was detected; however, the extremely low level is thought highly unlikely to play a role as an inflammatory trigger clinically.DiscussionThere is a high degree of inter- and intra-constrictor homogeneity from different batches, and reproducible ultrastructural changes following in vitro expansion. Variations occur in both the surface chemistry and topography of the device during closure, which can potentially affect the biomaterial-host interface. Ameroid constrictor closure mechanism is likely involving calcium-mediated inter-protein interactions rather than the imbibition of water only

    Data from: Heterogeneity of t-tubules in pig hearts

    No full text
    Background: T-tubules are invaginations of the sarcolemma that play a key role in excitation-contraction coupling in mammalian cardiac myocytes. Although t-tubules were generally considered to be effectively absent in atrial myocytes, recent studies on atrial cells from larger mammals suggest that t-tubules may be more numerous than previously supposed. However, the degree of heterogeneity between cardiomyocytes in the extent of the t-tubule network remains unclear. The aim of the present study was to investigate the t-tubule network of pig atrial myocytes in comparison with ventricular tissue. Methods: Cardiac tissue was obtained from young female Landrace White pigs (45–75 kg, 5–6 months old). Cardiomyocytes were isolated by arterial perfusion with a collagenase-containing solution. Ca2+ transients were examined in field-stimulated isolated cells loaded with fluo-4-AM. Membranes of isolated cells were visualized using di-8-ANEPPS. T-tubules were visualized in fixed-frozen tissue sections stained with Alexa-Fluor 488-conjugated WGA. Binary images were obtained by application of a threshold and t-tubule density (TTD) calculated. A distance mapping approach was used to calculate half-distance to nearest t-tubule (HDTT). Results & Conclusion: The spatio-temporal properties of the Ca2+ transient appeared to be consistent with the absence of functional t-tubules in isolated atrial myocytes. However, t-tubules could be identified in a sub-population of atrial cells in frozen sections. While all ventricular myocytes had TTD >3% (mean TTD = 6.94±0.395%, n = 24), this was true of just 5/22 atrial cells. Mean atrial TTD (2.35±0.457%, n = 22) was lower than ventricular TTD (P3% (1.65±0.06 μm, n = 5, P<0.05). These data demonstrate considerable heterogeneity between pig cardiomyocytes in the extent of t-tubule network, which correlated with cell size
    corecore